
Flink 
 

 

 
●​ True stream processing engine with event-by-event processing, unlike 

Spark’s micro-batch.  
●​ Components: 



○​ (Flink internally uses the Akka actor system for communication 
between the Job Managers and the Task Managers).  

○​ JobManager: Coordinates distributed execution, Schedules tasks, 
Manages checkpoints, Tracks job status, Handles failures and 
recovery.  

■​ JobManager high availability (HA) works by having multiple 
JobManager instances, with one acting as the leader and 
others as standbys, to eliminate the single point of failure. 

○​ TaskManager: Worker nodes that execute tasks, Manage task slots, 
Buffer and exchange data streams, Maintain state backends 

■​ Task Slots: Logical fraction of resources in TaskManager or a 
Container for multiple tasks. Memory isolated, CPU shared.  

●​ Each slot can execute one parallel instance of each task 
in the pipeline (via slot sharing) 

●​ Total available parallelism = number of TaskManagers × 
slots per TaskManager 

■​ Task: One or more chained operators running in one thread. 
All tasks run simultaneously.  

●​ All tasks run simultaneously (pipelined execution 
model) 

●​ Tasks are separated by network shuffles (e.g., keyBy(), 
rebalance(), broadcast()) 

●​ Compatible operators are chained into a single task to 
avoid serialization overhead 

■​ Threads: Each parallel instance of a task = 1 thread. 
●​ In a Slot: Multiple threads run (one per task stage), all 

sharing the slot's CPU quota 
●​ Total threads = Σ(Parallelism of each Task). If all tasks 

have same parallelism P: Total threads = Number of 
Tasks × P, where: Number of Tasks ≈ Number of shuffles 
+ 1 

●​ Parallelism: Number of parallel instances of an 
operator/task. It can be set per operator using 
.setParallelism(N) or globally. Match parallelism to 
bottleneck and throughput requirements of each stage. 



○​ Client: Submits jobs to JobManager, Can be CLI, web UI, or 
programmatic 

○​ ResourceManager: Manages task slots, Provisions containers (YARN, 
Kubernetes, Mesos).  

Eg:  

Infra:  

Assume 2 TaskManagers, 1 JobManager 

Machine: 64 cores, 256GB RAM per TaskManager 

taskmanager.numberOfTaskSlots::4  

Parallelism.default::8 -> Global parallelism, i.e for all 

operators 

 

Sample Flink Job:  

DataStream<SensorEvent> stream = env 

    .addSource(new FlinkKafkaConsumer<>(...))  // Read from Kafka 

    .name("Kafka Source") 

    .filter(event-> event.temperature > 0) // Filter invalid data 

    .name("Filter Invalid") 

    .map(event-> enrichEvent(event)) // Transform/enrich 

    .name("Enrich Data") 

    .keyBy(event-> event.sensorId) // Partition by sensor- SHUFFLE 

    .process(new ApiCallFunction()) // API call per sensor 

    .name("API Call") 

    .addSink(new JdbcSink<>(...)) // Write to database 

    .name("Database Sink"); 

``` 

LOGICAL RESOURCE ALLOCATION 

Step 1: Job Submission 

1. Client submits job to JobManager 

2. JobManager receives job and creates ExecutionGraph (logical 

plan) 

3. JobManager decides how to chain operators together 

4. JobManager assigns parallelism to each operator 

5. ResourceManager allocates task slots from TaskManagers 

 

Step 2: Operator Chaining 



Flink chains compatible operators into Tasks to avoid 

serialization overhead: 

Resulting Tasks: 

- Task 1: `[Kafka Source → Filter → Map]` (chained together) 

- Task 2: `[API Call]` (separated by keyBy shuffle) 

- Task 3: `[Database Sink]` 

 

Rules for Chaining: Same parallelism across operators. No shuffle 

between them (no `keyBy`, `rebalance`, `broadcast`) as shuffle 

creates task boundary. Connected by forward partitioning 

(one-to-one). Chaining is enabled (default). 

 

Step 3: Task Distribution 

With parallelism = 8: 

``` 

Task 1: [Source → Filter → Map]    Parallelism: 8  → 8 threads 

                ↓ (network shuffle via keyBy) 
Task 2: [API Call]                  Parallelism: 8  → 8 threads 

                ↓ 
Task 3: [Database Sink]             Parallelism: 8  → 8 threads 

> Total threads = 3 tasks × 8 parallelism = 24 threads 

 

Step 4: Slot Allocation 

With taskmanager.numberOfTaskSlots: 4 and 2 TaskManagers: 

Total slots available: 2 TaskManagers × 4 slots = 8 slots 

This means 3 threads per slot, 24 threads total across 8 slots 

 

PHYSICAL RESOURCE ALLOCATION 

(image pasted after this content **1)  

Each slot gets ~16 cores worth of CPU time 

More Slots Than Cores (Oversubscription): Good for: I/O-bound 

workloads (waiting on network/disk/API calls), Bad for: CPU-bound 

workloads (heavy computation) 

Opposite case with undersubscription.  

One slot per core is recommended.  

 

Other notes: 



Pipelining in 3 threads (Multiple events processing simultaneously 

at different stages) 

(image pasted after this content **2)  

Backpressure is created if downstream threads queue is getting 

filled up.  

—--------------------------------------------------- 

 

Other ex:  

Job: 

env.setParallelism(8);  // Global default 

DataStream<Event> stream = env 

    .addSource(kafkaSource) 

    .setParallelism(10)        // ← Override: 10 Kafka consumers 

    .name("Source") 

    .filter(e -> e.valid)      // Inherits 10 

    .map(e -> enrich(e))       // Inherits 10 

    .name("Transform") 

    .keyBy(e -> e.key)         // ← SHUFFLE: Task boundary 

    .window(...) 

    .aggregate(...) 

    .setParallelism(20)        // ← Override: 20 window operators 

    .name("Windowed Agg") 

    .keyBy(e -> e.userId)      // ← SHUFFLE: Task boundary 

    .process(new ApiCall()) 

    .setParallelism(4)         // ← Override: Only 4 API callers 

    .name("API") 

    .map(e -> format(e))       // Inherits 4 

    .keyBy(e -> e.region)      // ← SHUFFLE: Task boundary 

    .addSink(jdbcSink) 

    .setParallelism(16);       // ← Override: 16 DB writers 

 

Logical Tasks Created 

Task 1: [Source → Filter → Map]  Parallelism: 10 → 10 threads 

         ↓ (keyBy shuffle) 
Task 2: [Window → Aggregate]      Parallelism: 20 → 20 threads 

         ↓ (keyBy shuffle) 
Task 3: [Process (API) → Map]     Parallelism: 4  → 4 threads 



         ↓ (keyBy shuffle) 
Task 4: [Sink]                     Parallelism: 16 → 16 threads 

 

Total threads = 10 + 20 + 4 + 16 = 50 threads 

Slots needed = max(10, 20, 4, 16) = 20 slots (with slot sharing) 

 

Physical Slot Distribution 

 

With 20 slots available (5 TaskManagers × 4 slots): 

SLOT DISTRIBUTION WITH SLOT SHARING: 

 

Slot 1:  T1-inst0  + T2-inst0  + T3-inst0  + T4-inst0  = 4 threads 

Slot 2:  T1-inst1  + T2-inst1  + T3-inst1  + T4-inst1  = 4 threads 

Slot 3:  T1-inst2  + T2-inst2  + T3-inst2  + T4-inst2  = 4 threads 

Slot 4:  T1-inst3  + T2-inst3  + T3-inst3  + T4-inst3  = 4 threads 

Slot 5:  T1-inst4  + T2-inst4  + T3-empty  + T4-inst4  = 3 threads 

Slot 6:  T1-inst5  + T2-inst5  + T3-empty  + T4-inst5  = 3 threads 

Slot 7:  T1-inst6  + T2-inst6  + T3-empty  + T4-inst6  = 3 threads 

Slot 8:  T1-inst7  + T2-inst7  + T3-empty  + T4-inst7  = 3 threads 

Slot 9:  T1-inst8  + T2-inst8  + T3-empty  + T4-inst8  = 3 threads 

Slot 10: T1-inst9  + T2-inst9  + T3-empty  + T4-inst9  = 3 threads 

Slot 11: T1-empty  + T2-inst10 + T3-empty  + T4-inst10 = 2 threads 

Slot 12: T1-empty  + T2-inst11 + T3-empty  + T4-inst11 = 2 threads 

Slot 13: T1-empty  + T2-inst12 + T3-empty  + T4-inst12 = 2 threads 

Slot 14: T1-empty  + T2-inst13 + T3-empty  + T4-inst13 = 2 threads 

Slot 15: T1-empty  + T2-inst14 + T3-empty  + T4-inst14 = 2 threads 

Slot 16: T1-empty  + T2-inst15 + T3-empty  + T4-inst15 = 2 threads 

Slot 17: T1-empty  + T2-inst16 + T3-empty  + T4-empty  = 1 thread 

Slot 18: T1-empty  + T2-inst17 + T3-empty  + T4-empty  = 1 thread 

Slot 19: T1-empty  + T2-inst18 + T3-empty  + T4-empty  = 1 thread 

Slot 20: T1-empty  + T2-inst19 + T3-empty  + T4-empty  = 1 thread 

 

Total: 50 threads across 20 slots 

Average: 2.5 threads per slot 

 

Per-TaskManager View 

 



TaskManager 1 (32 cores, 4 slots): 

Slot 1:  4 threads } 

Slot 2:  4 threads }  16 threads total 

Slot 3:  4 threads }  competing for 32 cores 

Slot 4:  4 threads } 

 

TaskManager 2 (32 cores, 4 slots): 

Slot 5:  3 threads } 

Slot 6:  3 threads }  12 threads total 

Slot 7:  3 threads }  competing for 32 cores 

Slot 8:  3 threads } 

 

TaskManager 3 (32 cores, 4 slots): 

Slot 9:  3 threads } 

Slot 10: 3 threads }  12 threads total 

Slot 11: 2 threads }  competing for 32 cores 

Slot 12: 2 threads } 

 

TaskManager 4 (32 cores, 4 slots): 

Slot 13: 2 threads } 

Slot 14: 2 threads }  8 threads total 

Slot 15: 2 threads }  competing for 32 cores 

Slot 16: 2 threads } 

 

TaskManager 5 (32 cores, 4 slots): 

Slot 17: 1 thread } 

Slot 18: 1 thread }  4 threads total 

Slot 19: 1 thread }  competing for 32 cores (underutilized!) 

Slot 20: 1 thread } 

 

How Data Flows with Different Parallelism 

Network Shuffle Behavior 

10 Source instances reading from Kafka 

         ↓ 
    [Rebalance/Hash Partition by key] 

         ↓ 
20 Window instances (each receives from ~0.5 sources on average) 



         ↓ 
    [Hash Partition by userId] 

         ↓ 
4 API instances (each receives from ~5 window instances) 

         ↓ 
    [Hash Partition by region] 

         ↓ 
16 Sink instances (each receives from ~0.25 API instances) 

 

Example event flow: 

Event with key="sensor123", userId="user456", region="us-east" 

1. Read by Source-instance-7 (one of 10) 

2. Filter + Map in Source-instance-7 

3. Network shuffle: hash("sensor123") % 20 = 13 

   → Sent to Window-instance-13 

4. Windowing in Window-instance-13 

5. Network shuffle: hash("user456") % 4 = 2 

   → Sent to API-instance-2 

6. API call in API-instance-2 

7. Map in API-instance-2 

8. Network shuffle: hash("us-east") % 16 = 8 

   → Sent to Sink-instance-8 

9. DB write in Sink-instance-8 

 

All threads use OS scheduling to compete for the 32 cores 

 
(Physical resource allocation **1) 



 
 
(Pipelining in thread **2)



 
 

●​ Watermarks:  
○​ Special markers in stream indicating event time has progressed to 

certain point. Tell Flink when to trigger window computations. 
Events with timestamp < watermark are considered late. 

○​ Operators forward minimum watermark from all input streams 
(input unions, joins, etc.). Ensures correctness across parallel 
operations. 

○​ Watermarking if: aggressive - data loss, conservative - data lag. 
○​ Types: 

■​ Periodic Watermarks: 
●​ Generated at fixed intervals (default: 200ms) 
●​ Based on maximum observed timestamp minus allowed 

lateness 

Eg: DataStream<Event> stream = env 

    .addSource(new FlinkKafkaConsumer<>("events", new 

EventDeserializationSchema(), props)) 

    .assignTimestampsAndWatermarks( 



        WatermarkStrategy 

            

.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(5)) 

            .withTimestampAssigner((event, ts) -> 

event.getEventTime()) 

            .withIdleness(Duration.ofMinutes(1))  // handle idle 

Kafka partitions 

    ); 

-​ Emits watermark every 200ms by default. 

-​ forBoundedOutOfOrderness: Allows events that are up to 5s 

late (within watermark delay).  

-​ withIdleness(): prevents watermark stalls if one Kafka 

partition stops producing. 

-​ withTimestampAssigner(...): To extract event time from 

payload. Pattern: ISO-8601 string → epoch milliseconds, as 

Flink uses epoch millis internally for event time 

 

■​ Punctuated Watermarks: 
●​ Generated based on special markers in stream. 

Event-driven watermark generation 

Eg:  

DataStream<Event> stream = env 

    .addSource(new CustomSourceFunction()) 

    .assignTimestampsAndWatermarks( 

        new WatermarkStrategy<Event>() { 

            @Override 

            public WatermarkGenerator<Event> 

createWatermarkGenerator(WatermarkGeneratorSupplier.Context 

context) { 

                return new WatermarkGenerator<Event>() { 

                    private long currentMaxTimestamp = 

Long.MIN_VALUE; 

                    @Override 

                    public void onEvent(Event event, long 

eventTimestamp, WatermarkOutput output) { 

                        currentMaxTimestamp = 



Math.max(currentMaxTimestamp, eventTimestamp); 

           // Emit punctuated watermark when special flag is seen 

                        if (event.isEndOfBatch()) { 

                            output.emitWatermark(new 

Watermark(currentMaxTimestamp - 1)); 

                        } 

                    } 

                    @Override 

                    public void onPeriodicEmit(WatermarkOutput 

output) { 

                        // No-op for punctuated watermark 

                    } 

                }; 

            } 

            @Override 

            public TimestampAssigner<Event> 

createTimestampAssigner(TimestampAssignerSupplier.Context ctx) { 

                return (event, recordTimestamp) -> 

event.getEventTime(); }}); 

○​ To handle late arriving data: 
■​ Use Allowed Lateness: Eg: 

stream.keyBy(...).window(TumblingEventTimeWindows.of(Tim
e.minutes(1))).allowedLateness(Time.minutes(5)).sideOutputLa
teData(lateTag.aggregate(...) 

■​ Side Outputs: Redirect late data to separate stream for special 
handling, can reprocess, log, or send to dead letter queue. 

final OutputTag<Event> lateEventsTag = new 

OutputTag<Event>("late-events"){}; 

SingleOutputStreamOperator<AggregatedEvent> result = stream 

    .keyBy(Event::getKey) 

    .window(TumblingEventTimeWindows.of(Time.minutes(1))) 

    .allowedLateness(Time.minutes(5)) 

    .sideOutputLateData(lateEventsTag) 

    .aggregate(new MyAggregateFunction()); 

// Retrieve late data for special handling 

DataStream<Event> lateStream = 



result.getSideOutput(lateEventsTag); 

lateStream 

    .addSink(new DeadLetterQueueSink<>("late-events-dlq")); 

■​ Watermark Configuration: Increase allowed 
out-of-orderness; Tradeoff: Higher latency before window 
triggers 

env.getConfig().setAutoWatermarkInterval(1000L); // emit every 1 

second instead of 200ms 

■​ Window Reassignment: Custom logic to reassign late events 
to appropriate windows 

●​ Windows: A window defines how data in a stream is grouped for 
processing over time or count. Since data in streams is unbounded, 
windows help you create bounded slices of it for aggregation or analysis. 
Flink decides window boundaries based on ​
> Event time (Timestamp when event actually occurred. Embedded in the 
event record),​
> Processing time (Timestamp when event processed by Flink operator,    
> Non-deterministic (Depends on system speed)), or ​
> Ingestion time (Timestamp when event enters Flink source) 

○​ Types: 
■​ Tumbling Windows: Fixed-size, non-overlapping. Each event 

belongs to exactly one window. Eg: 
TumblingEventTimeWindows.of(Time.minutes(5)).  

●​ Use case: 5-minute aggregations, Periodic reports (e.g., 
sales per 5 minutes).​
|----5m----|----5m----|----5m----| 

■​ Sliding Windows: Fixed size with configurable slide interval. 
Windows can overlap. Eg: 
SlidingEventTimeWindows.of(Time.minutes(10), 
Time.minutes(5)... 

●​ Use case: Moving averages, rolling metrics​
|------10m------| 

     ​ ​ |------10m------| 



          ​​ ​ |------10m------| 

■​ Session Windows: Dynamic size based on inactivity gap. No 
fixed duration. Eg: 
EventTimeSessionWindows.withGap(Time.minutes(10)) 

●​ Use case: User session analysis, burst detection​
User clicks → gap < 10m → same window​
User idle  → gap > 10m → new session starts 

■​ Global Windows: Single window containing all events, 
Requires custom trigger.  

●​ Use case: Custom windowing logic 
■​ Count Windows: Based on number of elements. Eg: 

countWindow(100) // tumbling. countWindow(100, 10) // 
sliding 

●​ Use case: Batch-style aggregation 
○​ Triggers: Control when window is evaluated 

■​ EventTimeTrigger: Fire when watermark passes window end 
■​ ProcessingTimeTrigger: Fire based on processing time 
■​ CountTrigger: Fire after N elements 
■​ ContinuousEventTimeTrigger: Fire periodically within 

window 
■​ Custom Triggers: Implement TriggerResult (CONTINUE, FIRE, 

PURGE, FIRE_AND_PURGE) 
●​ FIRE emits results but keeps data for future updates; 

FIRE_AND_PURGE emits and clears state to free 
memory. 

○​ Evictors: Remove elements from window before/after computation 
■​ TimeEvictor: Keep only elements within time range 
■​ CountEvictor: Keep only last N elements 
■​ DeltaEvictor: Keep elements within delta threshold 
■​ Custom Evictors: Implement Evictor interface 

Eg:  

stream​
  .keyBy(...)​



  .window(GlobalWindows.create())​
  .trigger(CountTrigger.of(1000))​
  .evictor(TimeEvictor.of(Time.hours(1)))​
  .reduce(...) 

Visual: 

Event Stream:     E1   E2   E3   E4   E5 

Timestamps:       1s   2s   4s   7s   9s 

Window:           [0 ------------------- 10) 

Watermark:                        ↑ (fires trigger at 10s) 
Trigger:         CONT → CONT → CONT → CONT → FIRE 

Evictor:                        (removes old events before 

compute) 

●​ State Management: “state” means remembering information about past 
events to influence future processing. Flink stores and manages this state 
fault-tolerantly across operators and keys.  

○​ Types: 
■​ Keyed State: Scoped per key (after a keyBy() operation). Only 

accessible in keyed streams. Each key has its own isolated 
state partition. Eg: ValueState<T> (Single value per key), 
ListState<T> (List of values), MapState<K,V>, 
ReducingState<T>, etc.  

■​ Operator State: Scoped per operator instance, not per key. 
Used when partitioning isn’t applied (e.g., non-keyed 
source/sink). Eg: ListState, UnionListState, 
BroadcastState<K,V> 

○​ The State Backend determines how and where state is stored: 
■​ HashMapStateBackend: Stores state in-memory (JVM heap), 

fast, snapshots to external storage, only for development 
testing.  

■​ EmbeddedRocksDBStateBackend: RocksDB (disk), slower but 
scalable, best for prod.  

StreamExecutionEnvironment env = 

StreamExecutionEnvironment.getExecutionEnvironment(); 

env.setStateBackend(new EmbeddedRocksDBStateBackend()); 



env.getCheckpointConfig().setCheckpointStorage("s3://flink-checkpo

ints"); 

○​ State TTL (Time-To-Live): TTL prevents unbounded state growth. 
Automatic expiration of state after configured time. Can be 
incremental, snapshot based, compaction.  

StateTtlConfig ttlConfig = StateTtlConfig​
    .newBuilder(Time.days(7))​
    .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)​
.setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpi

red)​
    .cleanupInRocksdbCompactFilter()​
    .build(); 

Types: 

OnCreateAndWrite: Reset TTL on creation and writes 

OnReadAndWrite: Reset TTL on reads and writes 

Disabled: TTL never updated 

○​ State Rescaling: When you change job parallelism, Flink 
redistributes state. Works accordingly for Keyed and Operator 
states.   

●​ Checkpoints & Recovery: State is snapshotted periodically into durable 
storage (e.g., S3, HDFS) On recovery, Flink restores state exactly as before 
the failure. Steps: 

○​ Aligned Checkpoints:  
■​ Triggering: 

●​ The JobManager initiates a checkpoint periodically (as 
configured). 

●​ Checkpoint barriers are injected into the source tasks 
(Kafka, S3, etc.). 

■​ Barrier Propagation: 
●​ These barriers flow through the data stream, tagging all 

records as belonging to a specific checkpoint (say, #42). 
●​ Records before the barrier → belong to checkpoint 41. 
●​ Records after → belong to checkpoint 43. 



■​ State Snapshotting: 
●​ When an operator has received a barrier for checkpoint 

#42 from all its inputs, it: 
○​ Pauses processing new elements. 
○​ Snapshots its current operator state + keyed 

state asynchronously. 
○​ Persists this state to a checkpoint storage 

backend (e.g., S3, HDFS). 
■​ Barrier Acknowledgement: 

●​ Once all operators complete their snapshots, ack 
messages go to the JobManager. 

●​ When all are acked → checkpoint considered complete. 
●​ No global stop — processing continues concurrently 

(async snapshotting), just locally the operator may 
pause & faster upstream inputs would be buffered, 
downstream operators would still be running; Once 
checkpoint complete, then the local operator resumes. 

■​ What causes checkpoint alignment delays? 
●​ Skewed input rates — one Kafka partition slower than 

others. 
●​ Large operator state — snapshot takes long. 
●​ High backpressure — data flow uneven, barriers 

delayed. 
●​ Network congestion — delays barrier propagation. 
●​ Asynchronous snapshot thread saturation in RocksDB. 

○​ Unaligned checkpoints: Operators don’t wait for barrier alignment, 
In-flight records are included in checkpoint snapshots hence big 
checkpoint size, Checkpoints complete even under heavy 
backpressure.  

○​ Others:  
■​ Checkpoint Components: Operator state, Keyed state, 

In-flight records (for exactly-once). 
■​ Flink ensures exactly-once both in computation and sinks. 
■​ Checkpoint: Automatic, periodic, lightweight, may be deleted 

AND Savepoint: Manual, for versioning, upgrades, always 



retained 

env.enableCheckpointing(60000); // Every 60 seconds​
env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.E

XACTLY_ONCE);​
env.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);​
env.getCheckpointConfig().setCheckpointTimeout(600000);​
env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);​
env.getCheckpointConfig().setTolerableCheckpointFailureNumber(3); 

●​ Exactly-once in Flink: 
○​ Exactly-Once Processing: Internal state updated exactly once per 

event, Achieved through checkpointing, Flink guarantees this for 
state updates 

○​ Exactly-Once Delivery: Each event written to sink exactly once, 
Requires transactional or idempotent sinks, Harder to achieve, 
depends on external system. Delivery Guarantees: 

■​ At-Most-Once: Fire and forget, No checkpointing needed, 
Data loss possible, Lowest overhead 

■​ At-Least-Once: Checkpoint and replay on failure, Duplicates 
possible, Most sinks support this 

■​ Exactly-Once: Transactional sinks or idempotent writes, No 
duplicates or loss, Highest overhead.  

○​ Steps: 
■​ Source: 

●​ Must be replayable (Kafka offsets, file positions) 
●​ Checkpoint source positions 
●​ Reset to checkpoint on recovery 

■​ Internal Processing: 
●​ Barrier snapshotting ensures consistent state 
●​ All operators see same snapshot of inputs 

■​ Sink: 
●​ Transactional Sinks: Two-phase commit (2PC) 
●​ Idempotent Sinks: Deterministic IDs, overwrite on 

replay. ​
Eg: env.enableCheckpointing(60000); 



sink.setDeliveryGuarantee(DeliveryGuarantee.AT_LEA
ST_ONCE) 

●​ Partitioning Strategy:  
○​ It defines how records are distributed across parallel subtasks in 

Flink’s dataflow graph. This directly impacts state locality, load 
balancing, and network shuffle costs.  

○​ Strategies: 
■​ KeyBy: stream.keyBy(event -> event.getUserId()) 

●​ Hash partition by key 
●​ Same key always goes to same parallel instance 
●​ Enables keyed state 
●​ Can cause data skew if keys not uniformly distributed 

■​ Rebalance: stream.rebalance() 
●​ Round-robin distribution 
●​ Even load distribution 
●​ Causes network shuffle 
●​ Use when dealing with skewed data 

■​ Rescale: stream.rescale() 
●​ Local round-robin to subset of downstream tasks 
●​ Less network overhead than rebalance 
●​ Use when upstream and downstream parallelism are 

multiples 
■​ Forward: 

●​ One-to-one connection (no shuffle) 
●​ Preserves partitioning 
●​ Lowest overhead 

■​ Broadcast: stream.broadcast() 
●​ Send all elements to all parallel instances 
●​ Expensive, use sparingly 
●​ Useful for small reference data 

○​ Handle/detect data skew: 
■​ Flink UI to detect skewness.  
■​ Key Salting. Eg: .keyBy(event -> event.getUserId() + "_" + 

(event.getUserId().hashCode() % 4)) 
■​ Rebalance Before Stateful Operator: Helps redistribute load 



before keyBy when skewed distribution is known. Eg: 
rebalance().keyBy(...) 

■​ Dynamic Load Balancing: Implement custom partitioner. Eg: 
stream.partitionCustom(new CustomPartitioner(), event -> 
event.getKey()); 

■​ Scale Up Parallelism: Could operator parallelism. Eg: 
env.setMaxParallelism(128); 

●​ Process Functions: Process Functions are low-level API for stream 
processing. They give fine-grained control over: Event-time / 
processing-time timers, Custom logic beyond windowing / simple 
transformations, State access (keyed or operator), Side outputs (for late 
data or special cases). Types:  

○​ ProcessFunction<IN, OUT>: Operates on non-keyed streams. Gives 
access to processing time, event time, and side outputs. Cannot use 
keyed state (only operator state). 

stream.process(new ProcessFunction<Event, Result>() {​
    @Override​
    public void processElement(Event event, Context ctx, 

Collector<Result> out) {​
        out.collect(new Result("Received: " + event));​
    }​
}); 

○​ KeyedProcessFunction<K, IN, OUT>: Operates on keyed streams 
(after .keyBy()). Can use keyed state (ValueState, ListState, etc.). Can 
register event-time or processing-time timers per key. 

■​ Non-keyed stream: A normal DataStream where all events are 
processed together by each parallel subtask, without 
partitioning by key. Every operator instance gets a subset of 
the stream — distributed in parallel — but no key-based 
grouping is done. 

■​ Keyed Stream: Created by applying .keyBy(...) on a stream. 
Partitions the stream by key value, so all records with the 
same key go to the same parallel subtask. Usecase: If you 
need to track information per user, session, merchant, device, 



etc., like: Counting clicks per user: 

Example for Keyed stream:     

stream​
      .keyBy(Event::getUserId)​
      .process(new KeyedProcessFunction<String, Event, 

UserCount>() {​
          private ValueState<Integer> count;​
          public void open(Configuration parameters) {​
              count = getRuntimeContext().getState(new 

ValueStateDescriptor<>("count", Integer.class));​
          }​
          public void processElement(Event event, Context ctx, 

Collector<UserCount> out) throws Exception {​
              int newCount = (count.value() == null ? 0 : 

count.value()) + 1;​
              count.update(newCount);​
              out.collect(new UserCount(event.getUserId(), 

newCount));​
          }​
      }); 

 

Example for Keyed Process function: 

sstream.keyBy(Event::getUserId) 

    .process(new KeyedProcessFunction<String, Event, Result>() { 

        ... 

    } 

○​ ProcessWindowFunction<IN, OUT, KEY, W extends Window>: Used 
inside window operations. Gives access to window metadata 
(start/end timestamp). Provides all elements of the window for full 
aggregation. 

stream.keyBy(Event::getUserId)​
    .window(TumblingEventTimeWindows.of(Time.minutes(5)))​
    .process(new ProcessWindowFunction<Event, Result, String, 

TimeWindow>() {​



        @Override​
        public void process(String key, Context ctx, 

Iterable<Event> events, Collector<Result> out) {​
            long count = 

StreamSupport.stream(events.spliterator(), false).count();​
            out.collect(new Result(key, count, 

ctx.window().getEnd()));​
        }​
    }); 

○​ ProcessAllWindowFunction<IN, OUT, W extends Window>: Same as 
above, but for non-keyed windows (global). 

stream.windowAll(TumblingProcessingTimeWindows.of(Time.seconds(10)

))​
      .process(new ProcessAllWindowFunction<Event, Result, 

TimeWindow>() {​
          @Override​
          public void process(Context ctx, Iterable<Event> events, 

Collector<Result> out) {​
              out.collect(new Result("Total count = " + 

StreamSupport.stream(events.spliterator(), false).count()));​
          }​
      }); 

○​ CoProcessFunction<IN1, IN2, OUT>: Processes two connected 
streams together. Can access state shared between both inputs. 

DataStream<EventA> streamA = ...​
DataStream<EventB> streamB = ...​
streamA.connect(streamB)​
    .process(new CoProcessFunction<EventA, EventB, Result>() {​
        private ValueState<EventA> pendingA;​
        ...​
    } 

●​ Async I/O in Flink: Avoid blocking operators waiting for external service 



calls. Increase throughput with concurrent requests. Reduce latency. Use 
in API calls, DB reqs and lookups, etc.  

○​ orderedWait(): Preserve event order (lower throughput) 
○​ unorderedWait(): Allow reordering (higher throughput) 

Eg:​
class AsyncDatabaseRequest extends RichAsyncFunction<String, 

Tuple2<String, String>> { 

    private transient DatabaseClient client; 

     

    @Override 

    public void open(Configuration parameters) { 

        client = new DatabaseClient(); 

    } 

     

    @Override 

    public void asyncInvoke(String key, 

ResultFuture<Tuple2<String, String>> resultFuture) { 

        CompletableFuture<String> future = client.asyncQuery(key); 

         

        future.whenComplete((result, error) -> { 

            if (error != null) { 

                resultFuture.completeExceptionally(error); 

            } else { 

                resultFuture.complete(Collections.singleton(new 

Tuple2<>(key, result))); 

            } 

        }); 

    } 

     

    @Override 

    public void timeout(String input, ResultFuture<Tuple2<String, 

String>> resultFuture) { 

        resultFuture.complete(Collections.singleton(new 

Tuple2<>(input, "TIMEOUT"))); 

    } 

} 



 

// Usage 

AsyncDataStream.unorderedWait( 

    stream, 

    new AsyncDatabaseRequest(), 

    10000, TimeUnit.MILLISECONDS,  // timeout 

    100  // max concurrent requests 

); 

●​ Broadcast State pattern: Broadcasting rules/config to all parallel instances 
for enrichment. Each task (operator instance) maintains its own replica of 
the broadcast state, ensuring every event is processed with the latest 
rules — without network lookups. Broadcast state is fully replicated across 
all parallel subtasks → memory pressure grows linearly with number of 
subtasks × state size. To Manage Broadcast State Growth: Evict stale 
entries, State TTL, Compaction, Shard/split broadcast stream (multiple 
streams), Use rocksdb backend.  

// Stream 1: Rules/config (low volume)​
BroadcastStream<Rule> broadcastStream = rulesStream​
    .broadcast(rulesStateDescriptor);​
​
// Stream 2: Events (high volume)​
DataStream<Event> eventStream = ...;​
​
// Connect and process​
eventStream​
    .connect(broadcastStream)​
    .process(new BroadcastProcessFunction<Event, Rule, Result>() {​
        @Override​
        public void processElement(Event event, ReadOnlyContext 

ctx, Collector<Result> out) {​
            // Read broadcast state​
            for (Map.Entry<String, Rule> entry : ​
                    

ctx.getBroadcastState(rulesStateDescriptor).immutableEntries()) {​
                Rule rule = entry.getValue();​



                if (rule.matches(event)) {​
                    out.collect(new Result(event, rule));​
                }​
            }​
        }​
        ​
        @Override​
        public void processBroadcastElement(Rule rule, Context 

ctx, Collector<Result> out) {​
            // Update broadcast state​
            

ctx.getBroadcastState(rulesStateDescriptor).put(rule.getId(), 

rule);​
        }​
    }); 

●​ Side Output: Additional output streams from operators for specific use 
cases. Used for late data handling, error streams, etc.  

final OutputTag<Event> lateDataTag = new 

OutputTag<Event>("late-data"){};​
final OutputTag<Event> errorTag = new 

OutputTag<Event>("errors"){};​
​
SingleOutputStreamOperator<Result> mainStream = stream​
    .process(new ProcessFunction<Event, Result>() {​
        @Override​
        public void processElement(Event event, Context ctx, 

Collector<Result> out) {​
            try {​
                if (event.getTimestamp() < 

ctx.timerService().currentWatermark()) {​
                    // Late data​
                    ctx.output(lateDataTag, event);​
                } else if (!event.isValid()) {​
                    // Invalid data​
                    ctx.output(errorTag, event);​



                } else {​
                    // Normal processing​
                    out.collect(process(event));​
                }​
            } catch (Exception e) {​
                ctx.output(errorTag, event);​
            }​
        }​
    });​
​
// Get side outputs​
DataStream<Event> lateData = 

mainStream.getSideOutput(lateDataTag);​
DataStream<Event> errors = mainStream.getSideOutput(errorTag); 

●​ A SingleOutputStreamOperator<T> represents a transformation in your 
Flink job that produces one output stream of type T. This operator 
produces exactly one output stream. For transformations that produce 
multiple output types (like side outputs), Flink uses: ProcessFunction + 
OutputTag to produce multiple outputs (main + side). 

○​ DataStream → the base abstraction.  
○​ SingleOutputStreamOperator → a DataStream that comes from an 

operation producing one output.  
○​ KeyedStream, WindowedStream → specializations for 

keyed/windowed data. 
●​ Async Functions:  

○​ AsyncFunction<IN, OUT>: Lightweight - just asyncInvoke()  
○​ RichAsyncFunction<IN, OUT>:  + lifecycle hooks (open, close, 

getRuntimeContext). Any "Rich" prefix = Lifecycle + RuntimeContext 
access Examples: RichMapFunction, RichFlatMapFunction, 
RichAsyncFunction RuntimeContext: Provides metadata & utilities 
about running task 

●​ Joins: 
○​ For event-time Join between two streams, can use intervalJoin.  

SingleOutputStreamOperator<JoinedEvent> joinedStream = ​



    leftStream​
        .keyBy(LeftEvent::getJoinKey)​
        .intervalJoin(rightStream.keyBy(RightEvent::getJoinKey))​
        .between(Time.seconds(-60), Time.seconds(60))​
        .process(new ProcessJoinFunction<LeftEvent, RightEvent, 

JoinedEvent>() {​
            @Override​
            public void processElement(​
                LeftEvent left, ​
                RightEvent right,​
                Context ctx,​
                Collector<JoinedEvent> out​
            ) throws Exception {​
                JoinedEvent joined = new JoinedEvent();​
                joined.setId(UUID.randomUUID().toString());​
                joined.setTimestamp(right.getEventTimestamp());​
                // Combine/enrich from both sides​
                out.collect(joined);​
            }​
        }); 

 

How .between() Works 

For each LEFT event at time T: 

  Match RIGHT events where: 

    rightTime ∈ [leftTime - 60s, leftTime + 60s] 

Example: 

  Left event at 12:00:30 

  Matches right events from 11:59:30 to 12:01:30 

 

Key Points 

Requirement: Both streams must be keyed on join key 

Time-based: Uses event time (not processing time) 

Symmetric window: -60s to +60s means 2-minute total window 

ProcessJoinFunction: Defines join logic & output type 

●​ Sinks (S3/Kafka, etc):  
○​ FileSink API to write in S3. Kafka methods to publish in Kafka.  



// FileSink API:  

OutputFileConfig fileConfig = OutputFileConfig.builder()​
    .withPartPrefix("user-data-")​
    .withPartSuffix(".json")​
    .build();​
FileSink<T> sink = FileSink​
    .forRowFormat(new Path(s3BasePath), new Encoder<T>() {​
        @Override​
        public void encode(T element, OutputStream stream) throws 

IOException {​
            String json = 

objectMapper.writeValueAsString(element);​
            stream.write(json.getBytes(StandardCharsets.UTF_8));​
            stream.write('\n');  // Newline-delimited JSON​
        }​
    })​
    .withBucketAssigner(new 

DateTimeBucketAssigner<>("yyyy-MM-dd"))​
    .withRollingPolicy(​
        DefaultRollingPolicy.builder()​
            .withRolloverInterval(5000)      // Roll every 5s​
            .withInactivityInterval(5000)    // Roll after 5s idle​
            .withMaxPartSize(1024)           // Roll after 1KB​
            .build()​
    )​
    .withOutputFileConfig(fileConfig)​
    .build(); 

Info:  

BucketAssigner: Organizes files by date/time 

RollingPolicy: When to close & start new files. Like: Rollover 

interval: Time-based, Inactivity: Idle period, Max size: File size 

threshold.  

Encoder: Custom serialization logic 

 

—------------------------------------- 

// Kafka Sink: 

KafkaRecordSerializationSchema<Event> schema =  



    KafkaRecordSerializationSchema.<Event>builder() 

        .setTopic("output-topic") 

        .setValueSerializationSchema(new EventSchema()) 

        .build(); 

KafkaSink<Event> kafkaSink = KafkaSink.<Event>builder() 

    .setBootstrapServers("broker1:9092,broker2:9092") 

    .setRecordSerializer(schema) 

    .build(); 

// Usage 

stream.sinkTo(kafkaSink); 

Info: 

KafkaRecordSerializationSchema: How to serialize + which topic 

ValueSerializationSchema: Custom serializer for your type 

setRecordSerializer: Wires serialization logic to sink 

 

●​ Flink’s Table API and SQL API are high-level, declarative APIs built on top 
of the DataStream API. You can register DataStreams as Tables, perform 
Table or SQL queries, and then convert the results back to streams. 

StreamTableEnvironment tableEnv = 

StreamTableEnvironment.create(env);​
​
// Register a stream as a table with schema and watermark​
tableEnv.createTemporaryView(​
    "Events",​
    eventStream,​
    Schema.newBuilder()​
        .column("userId", DataTypes.STRING())​
        .column("amount", DataTypes.DOUBLE())​
        .column("eventTime", DataTypes.TIMESTAMP(3))​
        .watermark("eventTime", "eventTime - INTERVAL '5' SECOND")​
        .build()​
);​
​
// Table API query​
Table result = tableEnv.from("Events")​



    .groupBy($("userId"))​
    .select($("userId"), $("amount").sum().as("totalAmount"));​
​
// Convert back to DataStream​
DataStream<Row> resultStream = tableEnv.toDataStream(result); 

 

// Equivalent SQL ex: 

Table result = tableEnv.sqlQuery( 

    "SELECT userId, SUM(amount) AS totalAmount " + 

    "FROM Events GROUP BY userId" 

); 

●​ CEP (Complex Event Processing): Detect patterns in event streams. Used 
for fraud detection. 

Pattern<Event, ?> pattern = Pattern.<Event>begin("start")​
    .where(new SimpleCondition<Event>() {​
        @Override​
        public boolean filter(Event event) {​
            return event.getType().equals("login");​
        }​
    })​
    .next("middle")​
    .where(event -> event.getType().equals("payment"))​
    .followedBy("end")​
    .where(event -> event.getType().equals("logout"))​
    .within(Time.minutes(10)); 

●​ Other notes: 
○​ Operations in Flink: 

-​ Transformations: 

-​ map: One-to-one transformation that applies a function 

to each element. Eg: dataStream.map(event -> 

event.toUpperCase()); 

-​ flatMap: One-to-many transformation that can produce 

zero, one, or multiple elements for each input. Eg: 

dataStream.flatMap((event, out) -> {for (String word : 



event.split(" ")) { out.collect(word); }}); 

-​ filter: Keeps elements that satisfy a condition. Eg: 

dataStream.filter(event -> event.contains("error")); 

-​ Keying & Partitioning:  

-​ keyBy: Groups the stream by a key (creates a 

KeyedStream). Eg: dataStream.keyBy(event -> 

event.getUserId()); 

-​ shuffle: Redistributes elements randomly. Eg: 

dataStream.shuffle(); 

-​ rebalance: Evenly distributes elements across tasks. Eg: 

dataStream.rebalance(); 

-​ rescale: Redistributes elements in a round-robin fashion 

among downstream tasks. Eg: dataStream.rescale(); 

-​ broadcast: Replicates each element to all parallel 

tasks. Eg: dataStream.broadcast() 

-​ Aggregations & Windows: 

-​ reduce: Combines elements of a KeyedStream using a 

reduce function. Eg: keyedStream.reduce((a, b) -> new 

Sum(a.value + b.value)); 

-​ aggregate: Applies an aggregation function (like sum, 

min, max). Eg: keyedStream.sum("amount"); 

keyedStream.min("latency"); keyedStream.max("value"); 

-​ window: Groups elements of a stream into finite sets 

based on time or count. Eg: 

keyedStream.window(TumblingEventTimeWindows.of(Time.seco

nds(5))); 

keyedStream.window(SlidingProcessingTimeWindows.of(Time.

seconds(10), Time.seconds(5)));  

keyedStream.countWindow(100, 10); // sliding count 

window 

-​ windowAll: Creates a window on a non-keyed stream. Eg: 

dataStream.windowAll(TumblingProcessingTimeWindows.of(Ti

me.minutes(1))); 

-​ Joining & Combining 

-​ join: Joins two data streams based on a key. Eg: 

stream1.join(stream2).where(e1 -> 

e1.getKey()).equalTo(e2 -> 



e2.getKey()).window(TumblingEventTimeWindows.of(Time.sec

onds(5))).apply((e1, e2) -> new Tuple2<>(e1, e2)); 

-​ coGroup: Groups and joins two streams in a more flexible 

way than join. Eg: stream1.coGroup(stream2).where(e1 -> 

e1.getKey()).equalTo(e2 -> 

e2.getKey()).window(TumblingEventTimeWindows.of(Time.sec

onds(5))).apply(new CoGroupFunction<...>() {...}); 

-​ union: Combines multiple streams of the same type. Eg: 

stream1.union(stream2, stream3); 

-​ connect: Combines two streams of potentially different 

types. Eg: stream1.connect(stream2).map(new 

CoMapFunction<Type1, Type2, ResultType>() {...}); 

 

○​ Flink Performance Optimization: Parallelism Tuning (setParallelism), 
State Optimization (ValueState or MapState, Implement state TTL, 
Incremental Checkpointing, RocksDB Backend state), Checkpoint 
Optimization, Resource Configs, Network Optimize (Chain 
operators, reduce shuffle, local aggregations before shuffle), 
Operator Optimization (Use AggregateFunction instead of 
ProcessWindowFunction, Batch operations if possible).  

○​ Backpressure reasons: Slow operators, External system latency, 
Insufficient resources, Data skew (hot keys), GC pressure, 
Checkpoint alignment delays.  

○​ In eks yaml deployment config file you may use: upgradeMode key. 
The upgradeMode setting determines how Flink jobs behave during 
upgrades or restarts: 

■​ last-state mode: When a job is upgraded or restarted, it will 
attempt to restore from the most recent successful 
checkpoint. This preserves the processing state and allows 
the job to continue from where it left off. 

■​ stateless mode: The job will start from scratch after an 
upgrade, without attempting to restore any previous state. 
This is like a completely fresh deployment. 

■​ Note that if you have checkpointing related configs in yaml; 
The checkpointing configuration remains active in both 



modes - it’s just that the stateless mode ignores existing 
checkpoints when pipeline starting up. 

○​ Deployment modes in Flink: 
■​ Session Mode: Long-running cluster, Multiple jobs share 

same cluster, Resources shared across jobs, Use case: 
Development, multiple small jobs 

■​ Application Mode: One cluster per application, Main method 
runs on cluster, Better resource isolation, Use case: 
Production applications 

■​ Per-Job Mode (Deprecated): One cluster per job, Cluster 
terminated after job finishes, Use case: Batch jobs, isolation 

 
—---------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


	○​For event-time Join between two streams, can use intervalJoin.  

