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●​ Spark turns the user’s data processing commands into a Directed Acyclic 

Graph, or DAG, which determines the execution plan, i.e what tasks are 
executed on what nodes and in what sequence.  

●​ Spark runs in a distributed fashion by combining a Driver core process 
that splits a Spark application into tasks & distributes them among many 
Executor processes that do the work. Driver sends tasks to executors via 
Cluster Manager. 

●​ OpenSource vs Databricks managed Spark:  



 

○​ Native Spark (open-source): Client spark submits job → Driver JVM 
starts → Resource Manager (YARN/Mesos/K8s) allocates resources 
(cores, memory) to driver & executors. Jobs, Stages, Tasks executed. 
You must configure: driver-memory, driver-cores, num-executors, 
executor-memory, executor-cores, dynamic allocation, cluster 
manager settings. You can run Resource Manager on same master 
node. 

○​ Databricks (managed Spark): User submits job → Databricks handles 
almost EVERYTHING. You only configure high-level things.  

●​ Data Processing:  
○​ Resilient Distributed Dataset (RDD): Low-level abstraction, 

compile-time checking before the job runs​
(i.e, type-safety, ​
eg: val df = Seq((1,"Alice")).toDF("id", "name")​
df.select("nam").show()) // Typo in column name: "nam" instead of 
"name". // Compilation error thrown in start, before job runs ​
), NOT Catalyst/Tungsten engine optimised hence comparatively 
slow, Use - Lowlevel data transformations / custom 
partitioning/data not fitting tabular structure. 

○​ DataFrame: Medium-level abstraction, NO compile-time checking, 
Catalyst/Tungsten optimised, Use - Analytical queries, SQL-like 
aggregations, joins, filters. 

○​ Dataset: High-level abstraction, Compile-time checking, 
Catalyst/Tungsten optimised, Use - Type safety + functional + SQL 
benefits (Scala/Java only). 

●​ When Spark runs distributed code, it must serialize data and code before 
sending to worker nodes. 

○​ RDD stores raw JVM/Python objects, each record is a normal object 
((Int, String), class, etc.). To shuffle or persist these, Spark must: 
Serialize each object to bytes -> Send across the cluster -> 
Deserialize on the other side. This adds overhead.  

○​ DataFrames and Datasets are engine optimized, i.e storing data in 
binary tungsten format than usual java/pickle serialized format. 
Again, serialization/deserialization not needed.  



 

●​ Spark does lazy evaluation, i.e transformations don’t execute immediately. 
They build/add nodes in the logical plan (DAG), and only actions trigger 
actual computation and optimizations by engines during runtime. 
Jobs->Stages->Tasks.  

●​ Components: Driver node creates jobs/stages/tasks, and workers execute 
or process data partitions.  

○​ Application - A user program built on Spark using its APIs. It 
consists of a driver program and executors/workers on the cluster. 

○​ Job - Refers to a sequence of transformations on data in response to 
a Spark Action. Each job is converted into a DAG with execution 
plan/stages. 

■​ Execution: Sequential, unless you explicitly trigger multiple 
actions asynchronously (e.g., via threads, async APIs, or 
multiple Spark contexts).  

■​ Actions: collect(), count(), take(n)/head(n)/tail(), first(), 
foreach(func), foreachPartition(func), saveAsTextFile(), 
saveAsParquet(), saveAsTable(), reduce(func), fold(), 
aggregate(), countByKey(), collectAsMap(), toPandas(), 
write.format(...).save(), show(), rdd.takeSample(), 
rdd.saveAs...(), spark.sql("SELECT ...").show(), 
writeStream.start(). 

●​ spark.read.format()- just builds a logical plan, no 
execution. But if you combine it with 
spark.read.parquet("path").show(), then:  

○​ Job 1: Schema inference. It may scan some part of 
data/ read metadata to infer schema.  

○​ Job 2: Actual action (show, count, etc.) 
○​ Exception: If schema is already known (Delta, 

Hive table), only 1 job happens. 
●​ Similarly spark.sql("SELECT ...") will only build a logical 

plan, no action. But if you couple it with .show(), then 
action is triggered.  

■​ Case:  
●​ count(), it triggers a job, computation happens on 

workers, and later aggregation of stats happens on the 



 

driver - it's a safe function generally for heavy data also. 
But directly using collect(), it will bring rows on the 
driver which can cause an OOM on driver.  

●​ head() - Action (efficient - early termination possible). 
tail() - Action (less efficient - must scan entire 
dataset) 

○​ Stage - Each job gets divided into smaller sets of tasks called stages, 
in which a sequence of transformations can be executed in a single 
pass, i.e., without any shuffling of data. The boundary between two 
stages is due to data shuffling. Transformations never “bring data” 
immediately (they’re lazy). But they define how tasks and stages will 
run once an action triggers them. 

■​ Execution: Sequential 
■​ Transformations:  

●​ Wide (create a new stage): reduceByKey(), 
groupByKey(), join(df, on="id", how="left"), distinct(), 
repartition(), sortBy(), orderBy(), sortWithinPartitions(), 
coalesce(numPartitions, shuffle=True), cogroup(), 
cartesian(), aggregateByKey(). 

●​ Narrow: map(), filter(), union(), flatMap(), withColumn(), 
drop() / alias(), mapPartitions(), mapValues(), sample(), 
keyBy(), select() / where() / limit(), cache() / persist() / 
checkpoint(), createOrReplaceTempView(). 

○​ limit(n) is tricky: narrow if no global order, wide if 
combined with orderBy. 

○​ Task - A single unit of work or execution that will be sent to a Spark 
worker/executor. Stage divided into tasks, i.e: when a stage 
comprises transformations on an RDD, those transformations are 
packaged into a task to be executed on a single executor. Each 
partition in your RDD or DataFrame is processed by exactly one 
task, which is mapped to a single core. You may have many tasks, 
but how many of them execute in parallel depends on the 
underlying infra, i.e cores. 

■​ Execution: Parallel 
○​ Example:  



 

spark = SparkSession.builder \ 

    .appName("MultipleJobsStagesTasksExample") \ 

    .master("local[4]") \  # 4 cores, so up to 4 tasks can run in 

parallel 

    .config("spark.executor.memory", "2g") \ 

    .config("spark.driver.memory", "1g") \ 

    .config("spark.sql.shuffle.partitions", "4") \  # each shuffle 

will create 4 tasks 

    .getOrCreate() 

 

df = spark.createDataFrame(data, columns) 

## Repartition to 8 partitions (creates tasks) 

df = df.repartition(8, "group_id") 

## TRANSFORMATIONS (lazy) 

df_filtered = df.filter(col("amount") > 20) # narrow 

transformation, no new stage 

df_mapped = df_filtered.withColumn("amount_plus_5", col("amount") 

+ 5) 

## WIDE TRANSFORMATION (shuffle triggers new stage) 

df_grouped = 

df_mapped.groupBy("group_id").agg(avg("amount_plus_5").alias("avg_

amount")) 

## ACTION 1: triggers Job 1 

df_grouped.show() 

## Another ACTION: triggers Job 2 

df_mapped.count() 

—------------------------------------------------ 

Job 1 → df_grouped.show() 

  Stage 1: read & filter & map (df_filtered, df_mapped) → narrow   

transformations → tasks = 8 (Usual 1 task per partition, so 8 

tasks since 8 partitions) 

  Stage 2: groupBy (shuffle) → tasks = 4  

Driver collects final result to print (show()) 

 

Job 2 → df_mapped.count(): New action triggers another job 

  Only narrow transformations → one stage (no shuffle) -> 8 tasks 

(since one task per partition) count rows 



 

  Partial counts sent to driver → aggregated → final count 

 

** Had it been df_grouped.count() rather than df_mapped, then same 

number of stages/tasks would be created. 

 
●​ Note:  

○​ Cache intermediate DataFrames to avoid recomputation across 
stages.  In above example: caching/persist would help save time, 
BUT note that the number of stages/tasks created would be in 
expected lines and not reduced. 

■​ Cache vs Persist vs Checkpoint: 
●​ Cache: Stores the DataFrame in memory (RAM) by 

default. It’s equivalent to: 
df.persist(StorageLevel.MEMORY_ONLY). To remove 
cache ~ df.unpersist() 

●​ Persist: More flexible version of cache() — you can 
choose where and how to store data: Memory only, 
Memory + Disk, Disk only, Serialized, etc. 

●​ Checkpoint: It’s like a savepoint. Breaks the lineage of a 
DataFrame (cuts off its dependency graph); Writes data 
to disk (HDFS/S3) as a new materialized copy; Used for 
fault tolerance and state management (streaming or 
long transformations). Forces a job execution. Eg: ​
spark.sparkContext.setCheckpointDir("/mnt/checkpoi
nts"), then df.checkpoint().  

○​ config("spark.sql.shuffle.partitions", "4") is not the same as 
.repartition(4). The config sets how many partitions Spark creates 
after any shuffle (a default). Repartition forces a shuffle immediately 
and creates exactly 4 partitions for that DataFrame. 

○​ Job/stage planning happens on driver node. Task execution on 
worker nodes.   

○​ Actions are eager evaluation, transformations are lazy.  
●​ A partition is a logical chunk of data that Spark processes in task on a 

core. Ideal: 2-3 partitions on a core.  



 

○​ Default partitioning: Spark automatically partitions data based on 
the underlying file system block size — typically 128 MB or 256 MB 
per block in HDFS/S3. Eg: 

■​ Reading 3 files of 1 GB → ≈ 8 × 3 = 24 partitions (1 GB / 128 MB 
≈ 8). 

■​ Reading 3 small files of 10 MB → only 3 partitions (min 1 per 
file). 

■​ By default, Spark uses Hash Partitioning or Range Partitioning 
depending on operation type (e.g., joins use hash, sorts use 
range). 

■​ Spark recommends 2–3 tasks per CPU core for optimal 
parallelism. 

○​ Adjust partitions using: 
■​ repartition(n) – increase/decrease partitions with full shuffle 

(expensive but creates balanced, equal-sized partitions). 
■​ coalesce(n) – reduce partitions without full shuffle (cheap but 

may create uneven partitions; good for writing smaller 
outputs). 

●​ Use coalesce(..., shuffle=True) to rebalance when 
reducing partitions safely. Default False.  

■​ PartitionBy (When Writing Data) - 
write.partitionBy("country") → creates subfolders like 
country=IN/, country=US/ in output path. Great for filter 
pushdown and query pruning in Hive/Glue tables (will 
discuss). 

○​ Partition strategy: 
■​ Count: If high -> excessive overhead in managing many small 

tasks, If low -> underutilised cores in cluster.  
■​ Size: If large -> long computation time, slow write times, 

executor/worker OOM, If small -> slow read time 
downstream, large task creation overhead, driver OOM 

○​ Avoid partition on high-cardinality keys (e.g., user_id) → causes 
small files problem, skew, catalogue explosion, and slow query 
planning. 

○​ Types of Partitioning:  



 

■​ Hash Partitioning: Takes your key, applies a hash function, 
and assigns it to a partition by: partition = hash(key) % 
numPartitions. Deterministic distribution but if one key 
repeats a lot, that partition maybe skewed. Eg: join(), 
groupByKey(), reduceByKey(), distinct(). Code ex: ​
rdd = sc.parallelize([("A", 1), ("B", 2), ("A", 3), ("C", 4)], 
numSlices=3)​
grouped = rdd.groupByKey() # triggers hash partitioning 

■​ Range Partitioning: Sorts keys and divides them into 
contiguous ranges, so each partition gets a range of keys, say: 
partition 0: keys < 100, partition 1: 100–199, etc. Eg: 
sortByKey(), Range-based joins, etc. ​
Code ex: 
data = [(5, "A"), (1, "B"), (10, "C"), (20, "D"), (100, "E")] 
rdd = sc.parallelize(data, 2) 
sorted_rdd = rdd.sortByKey(numPartitions=3) # internally 
uses RangePartitioner 

■​ Custom Partitioning: By extending the Partitioner class 
(RDD-level only, not DataFrame). 

●​ Shuffling is the process of exchanging data between partitions. It’s an 
expensive operation. Triggered by wide-transformations.  

○​ Order of cost: ORDER BY (most expensive) > JOIN > GROUP BY. 
○​ Shuffle Optimization:  

■​ Broadcast joins – small DataFrame broadcasted to all 
executors which avoids shuffle for the large dataset. Eg:  

joined = large_df.join(broadcast(small_df), "id", "left") 

■​ Salting – add random prefixes to skewed keys before 
join/group. Eg: 

df1 = spark.createDataFrame([("A", 10), ("A", 20), ("A", 30), 

("B", 5)], ["key", "val"]) 

df2 = spark.createDataFrame([("A", "infoA"), ("B", "infoB")], 

["key", "info"]) 

# Salt the skewed key 'A' 

salted_df1 = df1.withColumn("salt", F.when(F.col("key") == "A", 



 

(F.rand() * 3).cast("int")).otherwise(0)) 

salted_df1 = salted_df1.withColumn("salted_key", 

F.concat(F.col("key"), F.lit("_"), F.col("salt"))) 

 

salts = spark.range(3).toDF("salt") 

salted_df2 = df2.join(salts, how="cross").withColumn("salted_key", 

F.concat(F.col("key"), F.lit("_"), F.col("salt"))) 

 

joined = salted_df1.join(salted_df2, "salted_key") 

■​ Bucketing – pre-partition large datasets by join key, avoids 
reshuffling. 

spark.conf.set("spark.sql.sources.partitionOverwriteMode", 

"dynamic")​
​
df1 = spark.createDataFrame([(1, "A"), (2, "B"), (3, "C")], ["id", 

"x"])​
df2 = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c")], ["id", 

"y"])​
​
# Write both as bucketed tables (e.g., 4 buckets on id) 

df1.write.bucketBy(4, 

"id").sortBy("id").saveAsTable("bucketed_df1")​
df2.write.bucketBy(4, 

"id").sortBy("id").saveAsTable("bucketed_df2")​
​
bucketed1 = spark.table("bucketed_df1")​
bucketed2 = spark.table("bucketed_df2")​
​
joined = bucketed1.join(bucketed2, "id") 

# Data for same id always lands in same bucket. Spark reads 

aligned buckets → no shuffle. Very efficient for repetitive joins 

on same key.  

 
■​ Repartition by key – ensures data co-location. 

df1p = df1.repartition("id")​
df2p = df2.repartition("id")​



 

joined = df1p.join(df2p, "id") 

# Each partition now holds a consistent key range/hash. Shuffle 

happens once, not redundantly. 

 
■​ Filter early – apply filters before joins/aggregations. 
■​ Use map-side combine (reduceByKey vs groupByKey). 

When you do an aggregation (like reduceByKey, countByKey, 

sumByKey, etc.), Spark tries to reduce the amount of data shuffled 

across the network. It does this by aggregating partial results 

locally on each executor before the shuffle -- that's called 

map-side combine. This optimization happens automatically with 

reduceByKey, but not with groupByKey.​
Eg:  

Case 1: result = rdd.groupByKey().mapValues(sum) -> Each executor 

collects all values per key → sends all (key, value) pairs over 

network to one reducer. Reducer receives all those values and sums 

them. All values are shuffled -- if "A" appears a million times, 

all 1 million pairs for "A" go over the network.​
Case 2: result = rdd.reduceByKey(lambda a, b: a + b) -> Each 

executor locally computes partial sums before shuffle. Reducer 

receives small number of partial results like [('A', 6), ('B', 9)] 

and merges them. Much less data shuffled -- Spark has already 

"pre-aggregated" locally. 

 
●​ Data Skew Optimization: Salting, Repartition, Enable Skew join hints with 

SKEW(df), etc.  
●​ Framework-level/Other optimizations:  

○​ Catalyst Optimizer (Logical Optimization Engine): 
■​ Catalyst = rule-based tree transformation framework. 

Converts user query → optimized physical plan. SQL query 
plan is a tree of nodes, which is optimized based on rules.  

■​ Unresolved Logical Plan  →  Analyzed Logical Plan  →  
Optimized Logical Plan → Physical Plan (cost-based) 

●​ Eg: SELECT name FROM users WHERE age > 5 AND 1 = 
1 



 

●​ Optimized Logical Plan: Project [name]->  Filter [age > 
30] -> Relation users; Catalyst removes 1=1, pushes filter 
below projection. 

■​ Stages:  
●​ Analysis – resolve references, check schema, infer data 

types. 
●​ Logical Optimization – apply rules: 

○​ Predicate pushdown (filter early): Reads only 
relevant rows from storage, like: WHERE age > 30 

○​ Projection pushdown (select few columns): Reads 
only required columns, like: SELECT name, age 

○​ Constant folding: replaces constant expressions 
at compile time (1 + 2 → 3). 

○​ Null propagation: replaces expressions with null 
if inputs are null. 

○​ Boolean simplification 
○​ Reordering joins: reorders join sequence based 

on estimated size. 
●​ Physical Planning – choose best physical plan (e.g., 

broadcast join vs shuffle join). 
○​ Configurations like: 

spark.sql.autoBroadcastJoinThreshold, 
spark.sql.shuffle.partitions, 
spark.sql.adaptive.enabled influence the physical 
plan. You can plug in: custom logical rules, 
optimizer rules, parser injection.  

●​ Code Generation – hand off optimized plan to 
Tungsten engine. 

○​ Tungsten Engine (Physical Execution Layer): 
■​ Executes the optimized plan from Catalyst. Focuses on 

memory & CPU efficiency. 
■​ Stages: 

●​ Whole-Stage Code Generation: Instead of interpreting 
every row through function calls (Row → apply → next 



 

→ Row), Spark generates compiled Java code for an 
entire physical query stage. At high level:  

Spark uses a codegen template in Scala/Java for each operator 

(FilterExec, ProjectExec, etc.).  

The CodegenSupport interface lets these operators provide snippets 

of Java source code.  

At runtime, Spark merges all snippets of operators in a stage → 

generates one long Java class (as a string) → compiles it into 

bytecode using Janino (a lightweight JIT compiler).  

This compiled bytecode runs directly on JVM without function call 

overheads. Eg:  

Old:  

while (iterator.hasNext()) { 

   val row = iterator.next() 

   if (row.value > 10) { 

       val newRow = row.value * 2 

       output.append(newRow) 

   } 

} 

New:  

for (int i = 0; i < numRows; i++) { 

   if (column[i] > 10) output[i] = column[i] * 2; 

} 

 
●​ Off-Heap Memory Management: Spark bypasses the 

JVM heap and manages memory natively, similar to 
C/C++. Uses sun.misc. Unsafe or Platform APIs to 
allocate memory manually. Instead of Java 
ArrayList<Row>, Spark has a flat binary block in native 
memory → each field accessed by offset. 

●​ Cache-Aware Execution: Stores serialized data in 
contiguous memory regions. Uses UnsafeRow format → 
all columns of a row stored in one contiguous memory 
block. 

●​ Vectorized Processing: Operates on batches of rows 
(columnar) instead of row-by-row (iterator model). 



 

Introduced with Parquet/ORC readers 
(VectorizedParquetReader). 

○​ Parquet is columnar format data storage.  
○​ Adaptive Query Execution (AQE): 

■​ Dynamically optimizes physical plans at runtime based on 
real data stats. 

■​ Stages: 
●​ Re-optimize join strategies (switch shuffle ↔ 

broadcast, Spark initially plans a Shuffle Join. During 
execution, detects if has to switch). 

●​ Merge small partitions → fewer tasks. 
●​ Split skewed partitions. (Detects one shuffle partition 

much larger than others. Splits that partition into 
smaller ones to avoid single strangler task. ) 

●​ Optimize shuffle partition count automatically (If Spark 
planned 200 partitions but actual data small, AQE 
merges to fewer partitions (say 10) → reduces 
overhead.) 

○​ Cost-Based Optimizer (CBO): 
■​ Uses collected table statistics (size, NDV, histograms) to 

choose better join orders and physical plans, works with 
Catalyst. Enabled via: spark.conf.set("spark.sql.cbo.enabled", 
True) 

○​ Executor Tuning:  
■​ Each Spark executor is a JVM process that runs multiple tasks 

in parallel, sharing CPU cores and memory. Tuning it effects 
the data processing.  

●​ Fat Executors: Few executors with more cores & 
memory per executor 

○​ Pros: Low shuffle, context switching, startup 
overhead.  

○​ Cons: More GC time, less parallelism.  
○​ Use in small cluster.  

●​ Tiny Executors: Many executors with fewer cores & 
memory each 



 

○​ Pros: High parallelism, localised failures.  
○​ Cons: High shuffle, Scheduler overhead.  
○​ Use in large cluster.  

■​ Use balanced executors.  
○​ ZOrder Optimization:  

■​ Z-Ordering is a multi-dimensional clustering technique for 
data files (typically Parquet/Delta). It co-locates related 
column values together in the same set of files to make 
filtering and range scans faster. 

Eg: ​
SELECT * FROM transactions WHERE country = 'IN' AND event_time 

BETWEEN '2025-10-01' AND '2025-10-10'; 

 

Databricks physically rearranges data on disk so that rows with 

similar country and event_time values end up close together (in 

the same files).  

So when you filter by these columns, Databricks needs to read 

fewer files — because the relevant data is tightly clustered 

instead of being scattered across many files. 

Query: OPTIMIZE transactions ZORDER BY (country, event_time); 

 

Internally, it interleaves the bits and stores, like:  

country bits:   0 1 1 0 0 1  

event_time bits:1 1 1 0 1 0 0 1 0 1 0 1  

Z-order bits:   0 1 1 1 0 0 1 1 0 0 1 0 1 0 1…  

Rows are sorted by this interleaved single composite Z-order bit 

key.  

Z-Ordering > Sorting by One Column 

 
○​ Code/SQL Query tips: 

■​ UNION removes duplicate rows, UNION ALL does not. There 
is a performance hit when using UNION instead of UNION 
ALL, choose based on usecase.  

■​ Avoid collect()/toPandas(). Prevents OOM & driver crashes. 
■​ Use coalesce() to reduce partitions.  
■​ Use native Spark SQL functions over UDFs.  



 

●​ Spark UDFs: UDF (User-Defined Function) is a custom 
function written by the user to extend Spark’s 
capabilities beyond the built-in functions provided by 
Spark SQL. It runs row by row on executors hence slow. 

●​ Scala/Java/SQL UDF - Catalyst optimized, Pandas UDF 
- partially optimized, Python UDF - Executes via Py4J, 
not optimised as serialization overhead. 

●​ Note that print() or debug() logs may not be visible as 
UDFs run on workers, not drivers to view logs. And 
when UDF fails on one partition, the entire stage fails 
and is retried. 

@udf(returnType=IntegerType())​
def safe_divide(a, b):​
    try:​
        return a // b if b != 0 else None​
    except Exception:​
        return None 

 
■​ Filtering before joins, AQE, skews fix, etc. 
■​ spark.sql.shuffle.partitions default value is 200, plan 

accordingly.  
■​ Use G1GC or Parallel GC for large heaps (Details in Java page). 
■​ Use KryoSerializer instead of Java serializer. 

●​ When Spark runs distributed jobs: Data is sent between 
executors (e.g., for shuffles, caching, broadcasts). Each 
time, Spark must serialize (convert objects into byte 
form) to transfer them across the network or store 
them in memory/disk. Hence performance matters.  

■​ Prefer partition pruning > filter at runtime. 
■​ Use checkpoint when lineage too long. 
■​ EXISTS/NOT EXISTS (Stops evaluating as soon as a match is 

found, faster) > IN/NOT IN (Subquery may be fully evaluated, 
slower on large datasets).  

SELECT * FROM orders ​



 

WHERE customer_id IN (SELECT id FROM customers WHERE active = 1);​
​
SELECT * FROM orders o​
WHERE EXISTS (​
    SELECT 1 FROM customers c ​
    WHERE c.id = o.customer_id AND c.active = 1​
); 

 
●​ Delta format: An open-source data storage format that adds a metadata 

layer on top of data files (like Apache Parquet) to bring ACID transactions, 
schema enforcement/validation, and data versioning to data lakes. 

○​ Parquet + Transaction Log (_delta_log/) 
○​ CDF (Change data feed): Track and read only the data that has 

changed 
○​ Optimistic concurrency with version checks; last writer wins unless 

conflict in case of concurrent writes in delta.  
○​ MERGE vs INSERT OVERWRITE: MERGE upserts, keeps history; 

INSERT OVERWRITE replaces, breaks time travel. 
○​ When data is written repeatedly in small batches (e.g., streaming 

writes, micro-batches, frequent MERGEs), Delta tables accumulate 
many small Parquet files — often a few KBs or MBs instead of 
hundreds of MBs. Small files problem in solved by Optimize + bin 
packing (compaction).  

 # MERGE (Upsert)​
deltaTable.alias("target").merge(​
    source.alias("source"), "target.id = source.id"​
).whenMatchedUpdate(set={"value": "source.value"}) \​
 .whenNotMatchedInsert(values={"id": "source.id", "value": 

"source.value"}) \​
 .execute()​
—----------------------------------------------- 

Merge vs Insert overwrite 

Merge:  

MERGE INTO user_data AS target 

USING updates AS source 



 

ON target.user_id = source.user_id 

WHEN MATCHED THEN UPDATE SET target.city = source.city 

WHEN NOT MATCHED THEN INSERT (user_id, name, city) 

VALUES (source.user_id, source.name, source.city); 

-> Keeps old versions → Time travel and CDF still work properly, 

Only updates necessary rows 

 

Insert:  

INSERT OVERWRITE TABLE user_data SELECT * FROM new_snapshot; 

-> Replaces existing data in the target scope (entire table or 

partition). Breaks lineage of replaced partitions — time travel 

still technically possible via older versions, but you lose 

fine-grained row history and CDF continuity 

—----------------------------------------------- 

​
# DELETE​
deltaTable.delete("date < '2024-01-01'")​
​
# UPDATE​
deltaTable.update(condition="status = 'pending'", set={"status": 

"'processed'"})​
​
# Time Travel​
df = spark.read.format("delta").option("versionAsOf", 

5).load("/path")​
df = spark.read.format("delta").option("timestampAsOf", 

"2024-10-01").load("/path") 

 

# Optimize data + Retain data commands ​
OPTIMIZE events ZORDER BY (country, date) 

VACUUM events RETAIN 168 HOURS 

 

# Enable CDF - delta.enableChangeDataFeed = true​
spark.read.format("delta") 

  .option("readChangeFeed", "true") 

  .option("startingVersion", 2) 

  .option("endingVersion", 3) 



 

  .table("user_data") 

 

 
Some more notes:  

●​ When a file is expected to be read but is no longer present, a typical job 
would fail with an exception. Setting spark.sql.files.ignoreMissingFiles to 
true tells Spark to handle the FileNotFoundException or similar errors by 
simply ignoring the missing file. The job will continue to process the 
remaining files, and the resulting DataFrame will contain data only from 
the files that existed. 

●​ foreach and foreachPartition:  
○​ Foreach: Runs function per row (use for debugging, not for I/O). 

Writing to db using this, can lead to millions of calls, hence avoid.  
○​ Foreachpartition: Runs function per partition on executor (ideal for 

external system writes) 
○​ Generally, they are used to write data to Kafka/RMQ/APIs/Tables, 

etc., termed as side-effects.  

df = df.checkpoint() # Prevent recomputation if partition fails 

# df.checkpoint(eager=True) # Materializes immediately  

# df.checkpoint(eager=False) # Lazy (on next action)​
df.rdd.foreachPartition(write_partition_to_dynamodb) # Efficient 

parallel writes 

 
●​ Spark is faster than Hadoop/MapReduce due to in-memory data 

processing, can spill memory to disk if required to handle large datasets, 
uses Catalyst optimizer, etc. 

●​ printSchema() shows parquet metadata only, does not trigger a job. View 
plans in Spark: Use df.explain(True) or df.queryExecution. 

●​ Foreach vs UDFs:  
○​ UDF and foreachPartition process data row by row, but they 

operate at completely different layers of Spark’s architecture — and 
have very different purposes. 

○​ UDF:  
■​ Transform data inside the Spark SQL/DataFrame engine. 



 

■​ Operates on data values (columns, rows) as part of a 
transformation (select, withColumn, filter, etc.) on executors. 
The output of a UDF is a new column value, part of the logical 
plan. 

○​ Foreach:  
■​ Perform actions with side effects, often for external I/O. Also 

runs on executors, but outside Spark’s SQL planner. Operates 
on raw data (RDD/Row objects) per partition. Used after all 
transformations are done. 

●​ Photon is Databricks’ next-generation vectorized execution engine, 
written in C++, designed to replace many of Spark’s traditional JVM 
operators.  

○​ How Photon runs:  
■​ Spark normally executes physical operators within 

JVM-based executors. 
■​ When Photon is enabled and the query is compatible: 

●​ Spark’s logical plan → Photon physical operators 
●​ Instead of running Java bytecode, executors load 

Photon's native C++ operators. 
■​ Photon uses the same columnar memory format (Arrow-like) 

that Spark uses → minimal copying. 
○​ Why C++ execution is faster 

■​ Python → JVM involves Py4J, IPC, serialization overhead → 
slow. 

■​ JVM → C++ (Photon) stays within the executor process using 
shared memory buffers → near zero serialization. 

■​ Photon uses: SIMD vectorization, tighter memory layout, CPU 
instruction-level optimizations (AVX-512, etc.) 

○​ Where Photon works: Photon accelerates: File Scans (Parquet, 
Delta), Projection, Filter, Aggregations, Joins (hash, sort-merge).  

○​ Where Photon does NOT work: Python / Scala UDFs, Complex 
nested types in some cases, MLlib operators, Graph workloads.  

■​ When unsupported sections appear, Spark falls back to JVM 
operators only for those parts—the rest of the plan can still 
use Photon. 



 

 

—--------—--------—--------—--------—--------—------------- 

Structured Streaming [High-level basics] 

●​ Core:  
○​ Spark treats streaming as incremental batch processing. Source → 

Ingestion → Transformations → Sink. DAG Scheduler handles each 
micro-batch as a separate job. 

○​ Unbounded Data: Continuous stream of incoming records (e.g., 
Kafka, socket, files).            

○​ Streaming DataFrame: Logical table that keeps growing over time.                           
○​ Trigger: Defines when to process data (e.g., 

`Trigger.ProcessingTime("10 seconds")`).  
○​ Micro-batch Mode (default): Spark batches incoming data into small 

chunks for processing.             
○​ Continuous Mode (experimental): Processes data record-by-record 

for sub-second latency (rarely used in prod).  
○​ Trigger.Once: Runs one micro-batch and stops (useful for 

incremental ETL).   
●​ Checkpointing: Essential for fault tolerance and recovery. Stores (in 

HDFS/S3): Offsets of data source (e.g., Kafka offset), State store snapshots 
(for aggregations/joins), Metadata for job progress. Without 
checkpointing, Spark can’t resume from failure. 

●​ Watermarking: Tells Spark how long to wait for late data. Example: 
withWatermark("event_time", "10 minutes"). Late data is discarded.  

●​ Operations:  
○​ Stateless: Eg: filter, map, select; Does not use any statestore 

(HDFS/S3).  
○​ Stateful: Eg: aggregations, windowed operations, joins; Uses 

statestore.  
●​ Stream joins:  

○​ Stream–Static Join: stream joined with a static lookup table 
○​ Stream–Stream Join: Both sides unbounded → requires watermark + 

state handling 



 

●​ Output Modes: 
○​ Append: Only new rows (e.g., no aggregation)  
○​ Update: Update existing aggregations incrementally  
○​ Complete: Recompute entire output table every batch (for full 

aggregates) 
●​ Sink: 

○​ In-memory table for testing / Spark SQL queries 
○​ File (Parquet/JSON) writes in micro-batches 
○​ Kafka; Exactly-once supported 
○​ foreach: Row-level custom sink. Risky — not idempotent 

■​ It’s not idempotent by default. If a micro-batch fails halfway 
through and restarts, Spark reprocesses that batch from the 
last checkpoint. foreach directly calls user logic (e.g., insert 
into DB, PUT to S3). Spark’s checkpoint only tracks offsets 
processed, not what your writer did externally. Runs directly 
on workers.  

○​ foreachBatch: Custom logic per batch-level. Best for DB writes 
(production level) 

■​ df.writeStream.foreachBatch(lambda batch_df, batch_id: ...): 
Runs once per micro-batch (not per row). BatchId is provided 
→ you can make your logic idempotent, say writing in append 
mode.  

■​ foreachBatch is considered safe for exactly-once sinks while 
foreach is not.  

■​ The callback (the control function) runs on the driver, But the 
data processing inside (batch_df operations) runs distributed 
on executors, just like any normal DataFrame job. 

●​ spark.streaming.backpressure.enabled=true: It adjusts the ingestion rate 
of data from the source.  

—------------------------------------------------------- 

Hadoop [High-level basics] 

●​ HDFS (Hadoop Distributed File System — Distributed Storage Layer) 



 

○​ Purpose: Reliable, fault-tolerant storage for very large files across a 
distributed cluster. 

○​ Architecture: 
■​ NameNode (Master): Stores metadata — file names, block 

locations, permissions. Keeps a transaction log (EditLog) and 
a checkpoint (FsImage). Doesn’t store actual data, only where 
blocks live. Single point of failure in early Hadoop versions 
(fixed later via Secondary NameNode / Standby NameNode / 
High Availability mode). 

■​ DataNodes (Slaves): Store actual file blocks (default size: 128 
MB or 256 MB). Send periodic heartbeats and block reports to 
the NameNode. Perform replication, deletion, and block 
creation as instructed by the NameNode. 

○​ Key Concepts: 
■​ Replication factor: Default = 3 → improves fault tolerance and 

availability. 
■​ Rack Awareness: NameNode knows rack topology → places 

replicas on different racks to balance network efficiency and 
fault resilience. 

■​ Write Path: Client → NameNode (for metadata) → Pipeline to 
DataNodes for block storage. 

■​ Read Path: Client contacts NameNode → retrieves block 
locations → reads directly from nearest DataNodes. 

○​ Benefits: High throughput, scalable storage, fault-tolerant, 
optimized for large sequential reads/writes. 

●​ MapReduce (Distributed Processing Framework) 
○​ Purpose: Parallel computation model that processes massive data 

using Map() and Reduce() functions. 
○​ Flow: 

■​ Job Submission: Client submits job to JobTracker (Hadoop v1) 
or YARN ResourceManager (v2). 

■​ Split Phase: Input is divided into chunks (InputSplits), 
typically aligned with HDFS blocks. 

■​ Map Phase: Mapper processes each split → outputs 
intermediate key-value pairs. 



 

■​ Shuffle & Sort: Framework groups all values by key and 
transfers them to the appropriate reducer. 

■​ Reduce Phase: Reducer aggregates or combines values per 
key → produces final output. 

○​ Key Points: 
■​ Idempotent: Multiple runs on same data yield same output. 
■​ Fault Tolerance: If a node fails, tasks are re-run on another 

node using data replicas. 
■​ Data Locality Optimization: Tries to schedule Map tasks on 

nodes where data already resides. 
■​ Output written back to HDFS. 

○​ Limitation: High latency for iterative or real-time processing — 
hence, frameworks like Spark were built to overcome this. 

●​ YARN (Yet Another Resource Negotiator — Cluster Resource Management 
Layer) 

○​ Purpose: Decouples resource management from job scheduling, 
making Hadoop cluster multi-tenant and more efficient. 

 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

Scenario(s)  

Question1: Assume daily data volume to be 1TB/day from Kafka. Discuss about 
infra requirements if you were to ingest/parse data and store in S3 - in daily 
basis (batch) or near real-time basis (streaming).   

Answer:  

Common Assumptions 

Parameter Value Notes 

Daily data volume 1 TB/day (≈ 1000 GB) Uncompressed 
JSON input 



 

Average record size 1 KB ≈ 1 billion 
records/day 

Storage layer HDFS / S3 / Delta Lake  

Compression after 
parse 

Parquet (≈ 5× smaller)  

Cluster type Spark on YARN or Kubernetes  

Task JSON parsing → schema 
mapping → write Parquet/Delta 

 

 

Batch Job (Run Once per Day): 

●​ Workload Pattern 
○​ One Spark job runs once a day.  
○​ Reads 1 TB JSON → parses → writes to Parquet.  
○​ Target: finish in ~1 hour. 

●​ JSON Parsing Throughput 
○​ Average: 30 – 50 MB/sec per vCPU. 
○​ Assume 40 MB/sec/vCPU for estimation. 
○​ Formula: Total time (sec) = (1000 GB × 1024 MB/GB) / (Throughput 

× vCPUs) 
○​ Target time = 3600 sec → vCPUs ≈ (1000 × 1024) / (40 × 3600) ≈ 7 

cores (ideal) 
○​ Add ~5× overhead for Spark shuffles, GC, I/O, etc.  → ≈ 40–50 

vCPUs needed realistically. 
●​ Suggested Infra (Batch): Note that if you’re fine with 2–3 hr runtime, halve 

the cores (~20–25 vCPUs). 

Resource Estimate 



 

Executors 10 – 12 

Cores / executor 4 – 5 

Total vCPUs 40 – 50 

Memory / executor 16 – 24 GB 

Total memory 200 – 250 GB 

Cluster nodes ~5–6 × m5.4xlarge (AWS) 

Cost ~ $3–4 per hour of runtime 

 

Near Real-time Streaming Job: 

●​ Workload Pattern 
○​ Continuous Kafka ingestion rate: 1 TB / 24 h = 1000 GB / 86400 s ≈ 

11.6 MB/sec 
○​ Goal: process each micro-batch within seconds or a minute. 

●​ Efficiency 
○​ Structured Streaming is ~2–3× less efficient than batch due to 

micro-batching and checkpointing. 
○​ Rule of thumb: ~2 vCPUs per MB/sec input rate 
○​ At 11.6 MB/sec input: 11.6 × 2 vCPUs ≈ 23 vCPUs 
○​ Add 50 % headroom → ≈ 35–40 vCPUs total (continuous). 

●​ Suggested Infra (Streaming): Note that streaming runs 24×7, unlike batch. 

Resource Estimate 



 

Executors 8 – 10 

Cores / executor 4 

Total vCPUs 32 – 40 

Memory / executor 16 – 24 GB 

Total memory 160 – 200 GB 

Cluster nodes ~4–5 × m5.4xlarge (AWS) 

Cost $3–4/hr × 24 h = $75–100/day 

 

Comparison Summary 

Aspect Batch (Daily) Streaming (Near Real-time) 

Data processed 1 TB once/day Continuous 1 TB/day 

Compute needed ~40–50 vCPUs (1 hr run) ~35–40 vCPUs continuous 

Memory ~200–250 GB ~160–200 GB 

Cost ~$3–4/hr (only 1 hr/day) ~$75–100/day 



 

Latency Up to 1 day Seconds – minutes 

Complexity Easier Higher (checkpointing, 
watermarking) 

 

Key Takeaways 

●​ Batch = cheaper, simpler if 1-day delay acceptable. Streaming = real-time 
insights but higher cost (~20–30× more). 

●​ JSON parsing is CPU-intensive — prefer Avro or Parquet ingestion. 
●​ Autoscaling or serverless Spark (Databricks, EMR on EKS) reduces idle 

cost. 
●​ Can I use less infra for streaming to save cost?  

○​ Yes — if your streaming job does very little per-record work, one or 
two vCPUs may keep up with a modest Kafka throughput. But if 
your streaming job performs CPU-heavy JSON parsing, joins, 
windowing, stateful operations, or frequent checkpoints, you need 
many more cores to avoid lag and operational issues. 

○​ Trade-offs when you reduce infra 
■​ Increased processing latency — microbatches take longer to 

finish → higher end-to-end latency (seconds → minutes → 
hours). 

■​ Backpressure and Kafka lag — consumer lag will grow if 
processing rate < input rate; lag must be stored in Kafka 
(requires sufficient retention). 

■​ Larger state / checkpoint growth — slower processing 
increases state growth and checkpoint sizes, slowing 
recoveries.  

■​ Spill to disk / GC pressure — insufficient memory leads to 
disk spill and longer task times; long GC pauses may cause 
executor failures.  

■​ Lower fault tolerance and recovery speed — on failure, 
recovery needs more time if checkpoints are large and cluster 
is small.  



 

■​ Higher operational complexity — must monitor lag, tune 
partitions, tune microbatch durations, autoscale carefully. 

■​ Potential for data loss if retention insufficient — if Kafka 
retention expires before backlog is processed. 

○​ Example scenarios (for 1 TB/day → 11.6 MB/s) 
■​ Scenario A — Light work (minimal parsing): 

●​ per_core_MBps = 12 MB/s 
●​ required_cores = 11.6 / 12 ≈ 1.0  
●​ headroom 2× → allocated_cores ≈ 2 vCPUs.  When 

appropriate: messages are already compact 
(AVRO/Protobuf), transforms are trivial, no stateful 
operations. 

■​ Scenario B — Medium work (JSON parsing + enrichments) 
●​ per_core_MBps = 4 MB/s 
●​ required_cores = 11.6 / 4 ≈ 2.9 
●​ headroom 2× → allocated_cores ≈ 6 vCPUs​

 When appropriate: parsing JSON, some UDFs, light 
joins, small state windows. 

■​ Scenario C — Heavy work (stateful joins, large windows, heavy 
UDFs) 

●​ per_core_MBps = 1 MB/s 
●​ required_cores = 11.6 / 1 ≈ 11.6 
●​ headroom 2× → allocated_cores ≈ 24 vCPUs​

 When appropriate: large keyed state, big aggregations, 
frequent checkpoints, complex UDFs. 

■​ Note: memory per executor should be aligned to avoid spills 
(e.g., 16–32 GB per executor depending on JVM overhead and 
state size). Also distribute workload across many Kafka 
partitions to parallelize. 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 

Question2: -  

Answer:- 



 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
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