

PySpark

Batch Pipelines

​

●​ Spark turns the user’s data processing commands into a Directed Acyclic

Graph, or DAG, which determines the execution plan, i.e what tasks are
executed on what nodes and in what sequence.

●​ Spark runs in a distributed fashion by combining a Driver core process
that splits a Spark application into tasks & distributes them among many
Executor processes that do the work. Driver sends tasks to executors via
Cluster Manager.

●​ OpenSource vs Databricks managed Spark:

○​ Native Spark (open-source): Client spark submits job → Driver JVM
starts → Resource Manager (YARN/Mesos/K8s) allocates resources
(cores, memory) to driver & executors. Jobs, Stages, Tasks executed.
You must configure: driver-memory, driver-cores, num-executors,
executor-memory, executor-cores, dynamic allocation, cluster
manager settings. You can run Resource Manager on same master
node.

○​ Databricks (managed Spark): User submits job → Databricks handles
almost EVERYTHING. You only configure high-level things.

●​ Data Processing:
○​ Resilient Distributed Dataset (RDD): Low-level abstraction,

compile-time checking before the job runs​
(i.e, type-safety, ​
eg: val df = Seq((1,"Alice")).toDF("id", "name")​
df.select("nam").show()) // Typo in column name: "nam" instead of
"name". // Compilation error thrown in start, before job runs ​
), NOT Catalyst/Tungsten engine optimised hence comparatively
slow, Use - Lowlevel data transformations / custom
partitioning/data not fitting tabular structure.

○​ DataFrame: Medium-level abstraction, NO compile-time checking,
Catalyst/Tungsten optimised, Use - Analytical queries, SQL-like
aggregations, joins, filters.

○​ Dataset: High-level abstraction, Compile-time checking,
Catalyst/Tungsten optimised, Use - Type safety + functional + SQL
benefits (Scala/Java only).

●​ When Spark runs distributed code, it must serialize data and code before
sending to worker nodes.

○​ RDD stores raw JVM/Python objects, each record is a normal object
((Int, String), class, etc.). To shuffle or persist these, Spark must:
Serialize each object to bytes -> Send across the cluster ->
Deserialize on the other side. This adds overhead.

○​ DataFrames and Datasets are engine optimized, i.e storing data in
binary tungsten format than usual java/pickle serialized format.
Again, serialization/deserialization not needed.

●​ Spark does lazy evaluation, i.e transformations don’t execute immediately.
They build/add nodes in the logical plan (DAG), and only actions trigger
actual computation and optimizations by engines during runtime.
Jobs->Stages->Tasks.

●​ Components: Driver node creates jobs/stages/tasks, and workers execute
or process data partitions.

○​ Application - A user program built on Spark using its APIs. It
consists of a driver program and executors/workers on the cluster.

○​ Job - Refers to a sequence of transformations on data in response to
a Spark Action. Each job is converted into a DAG with execution
plan/stages.

■​ Execution: Sequential, unless you explicitly trigger multiple
actions asynchronously (e.g., via threads, async APIs, or
multiple Spark contexts).

■​ Actions: collect(), count(), take(n)/head(n)/tail(), first(),
foreach(func), foreachPartition(func), saveAsTextFile(),
saveAsParquet(), saveAsTable(), reduce(func), fold(),
aggregate(), countByKey(), collectAsMap(), toPandas(),
write.format(...).save(), show(), rdd.takeSample(),
rdd.saveAs...(), spark.sql("SELECT ...").show(),
writeStream.start().

●​ spark.read.format()- just builds a logical plan, no
execution. But if you combine it with
spark.read.parquet("path").show(), then:

○​ Job 1: Schema inference. It may scan some part of
data/ read metadata to infer schema.

○​ Job 2: Actual action (show, count, etc.)
○​ Exception: If schema is already known (Delta,

Hive table), only 1 job happens.
●​ Similarly spark.sql("SELECT ...") will only build a logical

plan, no action. But if you couple it with .show(), then
action is triggered.

■​ Case:
●​ count(), it triggers a job, computation happens on

workers, and later aggregation of stats happens on the

driver - it's a safe function generally for heavy data also.
But directly using collect(), it will bring rows on the
driver which can cause an OOM on driver.

●​ head() - Action (efficient - early termination possible).
tail() - Action (less efficient - must scan entire
dataset)

○​ Stage - Each job gets divided into smaller sets of tasks called stages,
in which a sequence of transformations can be executed in a single
pass, i.e., without any shuffling of data. The boundary between two
stages is due to data shuffling. Transformations never “bring data”
immediately (they’re lazy). But they define how tasks and stages will
run once an action triggers them.

■​ Execution: Sequential
■​ Transformations:

●​ Wide (create a new stage): reduceByKey(),
groupByKey(), join(df, on="id", how="left"), distinct(),
repartition(), sortBy(), orderBy(), sortWithinPartitions(),
coalesce(numPartitions, shuffle=True), cogroup(),
cartesian(), aggregateByKey().

●​ Narrow: map(), filter(), union(), flatMap(), withColumn(),
drop() / alias(), mapPartitions(), mapValues(), sample(),
keyBy(), select() / where() / limit(), cache() / persist() /
checkpoint(), createOrReplaceTempView().

○​ limit(n) is tricky: narrow if no global order, wide if
combined with orderBy.

○​ Task - A single unit of work or execution that will be sent to a Spark
worker/executor. Stage divided into tasks, i.e: when a stage
comprises transformations on an RDD, those transformations are
packaged into a task to be executed on a single executor. Each
partition in your RDD or DataFrame is processed by exactly one
task, which is mapped to a single core. You may have many tasks,
but how many of them execute in parallel depends on the
underlying infra, i.e cores.

■​ Execution: Parallel
○​ Example:

spark = SparkSession.builder \

 .appName("MultipleJobsStagesTasksExample") \

 .master("local[4]") \ # 4 cores, so up to 4 tasks can run in

parallel

 .config("spark.executor.memory", "2g") \

 .config("spark.driver.memory", "1g") \

 .config("spark.sql.shuffle.partitions", "4") \ # each shuffle

will create 4 tasks

 .getOrCreate()

df = spark.createDataFrame(data, columns)

Repartition to 8 partitions (creates tasks)

df = df.repartition(8, "group_id")

TRANSFORMATIONS (lazy)

df_filtered = df.filter(col("amount") > 20) # narrow

transformation, no new stage

df_mapped = df_filtered.withColumn("amount_plus_5", col("amount")

+ 5)

WIDE TRANSFORMATION (shuffle triggers new stage)

df_grouped =

df_mapped.groupBy("group_id").agg(avg("amount_plus_5").alias("avg_

amount"))

ACTION 1: triggers Job 1

df_grouped.show()

Another ACTION: triggers Job 2

df_mapped.count()

—--

Job 1 → df_grouped.show()

 Stage 1: read & filter & map (df_filtered, df_mapped) → narrow

transformations → tasks = 8 (Usual 1 task per partition, so 8

tasks since 8 partitions)

 Stage 2: groupBy (shuffle) → tasks = 4

Driver collects final result to print (show())

Job 2 → df_mapped.count(): New action triggers another job

 Only narrow transformations → one stage (no shuffle) -> 8 tasks

(since one task per partition) count rows

 Partial counts sent to driver → aggregated → final count

** Had it been df_grouped.count() rather than df_mapped, then same

number of stages/tasks would be created.

●​ Note:

○​ Cache intermediate DataFrames to avoid recomputation across
stages. In above example: caching/persist would help save time,
BUT note that the number of stages/tasks created would be in
expected lines and not reduced.

■​ Cache vs Persist vs Checkpoint:
●​ Cache: Stores the DataFrame in memory (RAM) by

default. It’s equivalent to:
df.persist(StorageLevel.MEMORY_ONLY). To remove
cache ~ df.unpersist()

●​ Persist: More flexible version of cache() — you can
choose where and how to store data: Memory only,
Memory + Disk, Disk only, Serialized, etc.

●​ Checkpoint: It’s like a savepoint. Breaks the lineage of a
DataFrame (cuts off its dependency graph); Writes data
to disk (HDFS/S3) as a new materialized copy; Used for
fault tolerance and state management (streaming or
long transformations). Forces a job execution. Eg: ​
spark.sparkContext.setCheckpointDir("/mnt/checkpoi
nts"), then df.checkpoint().

○​ config("spark.sql.shuffle.partitions", "4") is not the same as
.repartition(4). The config sets how many partitions Spark creates
after any shuffle (a default). Repartition forces a shuffle immediately
and creates exactly 4 partitions for that DataFrame.

○​ Job/stage planning happens on driver node. Task execution on
worker nodes.

○​ Actions are eager evaluation, transformations are lazy.
●​ A partition is a logical chunk of data that Spark processes in task on a

core. Ideal: 2-3 partitions on a core.

○​ Default partitioning: Spark automatically partitions data based on
the underlying file system block size — typically 128 MB or 256 MB
per block in HDFS/S3. Eg:

■​ Reading 3 files of 1 GB → ≈ 8 × 3 = 24 partitions (1 GB / 128 MB
≈ 8).

■​ Reading 3 small files of 10 MB → only 3 partitions (min 1 per
file).

■​ By default, Spark uses Hash Partitioning or Range Partitioning
depending on operation type (e.g., joins use hash, sorts use
range).

■​ Spark recommends 2–3 tasks per CPU core for optimal
parallelism.

○​ Adjust partitions using:
■​ repartition(n) – increase/decrease partitions with full shuffle

(expensive but creates balanced, equal-sized partitions).
■​ coalesce(n) – reduce partitions without full shuffle (cheap but

may create uneven partitions; good for writing smaller
outputs).

●​ Use coalesce(..., shuffle=True) to rebalance when
reducing partitions safely. Default False.

■​ PartitionBy (When Writing Data) -
write.partitionBy("country") → creates subfolders like
country=IN/, country=US/ in output path. Great for filter
pushdown and query pruning in Hive/Glue tables (will
discuss).

○​ Partition strategy:
■​ Count: If high -> excessive overhead in managing many small

tasks, If low -> underutilised cores in cluster.
■​ Size: If large -> long computation time, slow write times,

executor/worker OOM, If small -> slow read time
downstream, large task creation overhead, driver OOM

○​ Avoid partition on high-cardinality keys (e.g., user_id) → causes
small files problem, skew, catalogue explosion, and slow query
planning.

○​ Types of Partitioning:

■​ Hash Partitioning: Takes your key, applies a hash function,
and assigns it to a partition by: partition = hash(key) %
numPartitions. Deterministic distribution but if one key
repeats a lot, that partition maybe skewed. Eg: join(),
groupByKey(), reduceByKey(), distinct(). Code ex: ​
rdd = sc.parallelize([("A", 1), ("B", 2), ("A", 3), ("C", 4)],
numSlices=3)​
grouped = rdd.groupByKey() # triggers hash partitioning

■​ Range Partitioning: Sorts keys and divides them into
contiguous ranges, so each partition gets a range of keys, say:
partition 0: keys < 100, partition 1: 100–199, etc. Eg:
sortByKey(), Range-based joins, etc. ​
Code ex:
data = [(5, "A"), (1, "B"), (10, "C"), (20, "D"), (100, "E")]
rdd = sc.parallelize(data, 2)
sorted_rdd = rdd.sortByKey(numPartitions=3) # internally
uses RangePartitioner

■​ Custom Partitioning: By extending the Partitioner class
(RDD-level only, not DataFrame).

●​ Shuffling is the process of exchanging data between partitions. It’s an
expensive operation. Triggered by wide-transformations.

○​ Order of cost: ORDER BY (most expensive) > JOIN > GROUP BY.
○​ Shuffle Optimization:

■​ Broadcast joins – small DataFrame broadcasted to all
executors which avoids shuffle for the large dataset. Eg:

joined = large_df.join(broadcast(small_df), "id", "left")

■​ Salting – add random prefixes to skewed keys before
join/group. Eg:

df1 = spark.createDataFrame([("A", 10), ("A", 20), ("A", 30),

("B", 5)], ["key", "val"])

df2 = spark.createDataFrame([("A", "infoA"), ("B", "infoB")],

["key", "info"])

Salt the skewed key 'A'

salted_df1 = df1.withColumn("salt", F.when(F.col("key") == "A",

(F.rand() * 3).cast("int")).otherwise(0))

salted_df1 = salted_df1.withColumn("salted_key",

F.concat(F.col("key"), F.lit("_"), F.col("salt")))

salts = spark.range(3).toDF("salt")

salted_df2 = df2.join(salts, how="cross").withColumn("salted_key",

F.concat(F.col("key"), F.lit("_"), F.col("salt")))

joined = salted_df1.join(salted_df2, "salted_key")

■​ Bucketing – pre-partition large datasets by join key, avoids
reshuffling.

spark.conf.set("spark.sql.sources.partitionOverwriteMode",

"dynamic")​
​
df1 = spark.createDataFrame([(1, "A"), (2, "B"), (3, "C")], ["id",

"x"])​
df2 = spark.createDataFrame([(1, "a"), (2, "b"), (3, "c")], ["id",

"y"])​
​
Write both as bucketed tables (e.g., 4 buckets on id)

df1.write.bucketBy(4,

"id").sortBy("id").saveAsTable("bucketed_df1")​
df2.write.bucketBy(4,

"id").sortBy("id").saveAsTable("bucketed_df2")​
​
bucketed1 = spark.table("bucketed_df1")​
bucketed2 = spark.table("bucketed_df2")​
​
joined = bucketed1.join(bucketed2, "id")

Data for same id always lands in same bucket. Spark reads

aligned buckets → no shuffle. Very efficient for repetitive joins

on same key.

■​ Repartition by key – ensures data co-location.

df1p = df1.repartition("id")​
df2p = df2.repartition("id")​

joined = df1p.join(df2p, "id")

Each partition now holds a consistent key range/hash. Shuffle

happens once, not redundantly.

■​ Filter early – apply filters before joins/aggregations.
■​ Use map-side combine (reduceByKey vs groupByKey).

When you do an aggregation (like reduceByKey, countByKey,

sumByKey, etc.), Spark tries to reduce the amount of data shuffled

across the network. It does this by aggregating partial results

locally on each executor before the shuffle -- that's called

map-side combine. This optimization happens automatically with

reduceByKey, but not with groupByKey.​
Eg:

Case 1: result = rdd.groupByKey().mapValues(sum) -> Each executor

collects all values per key → sends all (key, value) pairs over

network to one reducer. Reducer receives all those values and sums

them. All values are shuffled -- if "A" appears a million times,

all 1 million pairs for "A" go over the network.​
Case 2: result = rdd.reduceByKey(lambda a, b: a + b) -> Each

executor locally computes partial sums before shuffle. Reducer

receives small number of partial results like [('A', 6), ('B', 9)]

and merges them. Much less data shuffled -- Spark has already

"pre-aggregated" locally.

●​ Data Skew Optimization: Salting, Repartition, Enable Skew join hints with

SKEW(df), etc.
●​ Framework-level/Other optimizations:

○​ Catalyst Optimizer (Logical Optimization Engine):
■​ Catalyst = rule-based tree transformation framework.

Converts user query → optimized physical plan. SQL query
plan is a tree of nodes, which is optimized based on rules.

■​ Unresolved Logical Plan → Analyzed Logical Plan →
Optimized Logical Plan → Physical Plan (cost-based)

●​ Eg: SELECT name FROM users WHERE age > 5 AND 1 =
1

●​ Optimized Logical Plan: Project [name]-> Filter [age >
30] -> Relation users; Catalyst removes 1=1, pushes filter
below projection.

■​ Stages:
●​ Analysis – resolve references, check schema, infer data

types.
●​ Logical Optimization – apply rules:

○​ Predicate pushdown (filter early): Reads only
relevant rows from storage, like: WHERE age > 30

○​ Projection pushdown (select few columns): Reads
only required columns, like: SELECT name, age

○​ Constant folding: replaces constant expressions
at compile time (1 + 2 → 3).

○​ Null propagation: replaces expressions with null
if inputs are null.

○​ Boolean simplification
○​ Reordering joins: reorders join sequence based

on estimated size.
●​ Physical Planning – choose best physical plan (e.g.,

broadcast join vs shuffle join).
○​ Configurations like:

spark.sql.autoBroadcastJoinThreshold,
spark.sql.shuffle.partitions,
spark.sql.adaptive.enabled influence the physical
plan. You can plug in: custom logical rules,
optimizer rules, parser injection.

●​ Code Generation – hand off optimized plan to
Tungsten engine.

○​ Tungsten Engine (Physical Execution Layer):
■​ Executes the optimized plan from Catalyst. Focuses on

memory & CPU efficiency.
■​ Stages:

●​ Whole-Stage Code Generation: Instead of interpreting
every row through function calls (Row → apply → next

→ Row), Spark generates compiled Java code for an
entire physical query stage. At high level:

Spark uses a codegen template in Scala/Java for each operator

(FilterExec, ProjectExec, etc.).

The CodegenSupport interface lets these operators provide snippets

of Java source code.

At runtime, Spark merges all snippets of operators in a stage →

generates one long Java class (as a string) → compiles it into

bytecode using Janino (a lightweight JIT compiler).

This compiled bytecode runs directly on JVM without function call

overheads. Eg:

Old:

while (iterator.hasNext()) {

 val row = iterator.next()

 if (row.value > 10) {

 val newRow = row.value * 2

 output.append(newRow)

 }

}

New:

for (int i = 0; i < numRows; i++) {

 if (column[i] > 10) output[i] = column[i] * 2;

}

●​ Off-Heap Memory Management: Spark bypasses the

JVM heap and manages memory natively, similar to
C/C++. Uses sun.misc. Unsafe or Platform APIs to
allocate memory manually. Instead of Java
ArrayList<Row>, Spark has a flat binary block in native
memory → each field accessed by offset.

●​ Cache-Aware Execution: Stores serialized data in
contiguous memory regions. Uses UnsafeRow format →
all columns of a row stored in one contiguous memory
block.

●​ Vectorized Processing: Operates on batches of rows
(columnar) instead of row-by-row (iterator model).

Introduced with Parquet/ORC readers
(VectorizedParquetReader).

○​ Parquet is columnar format data storage.
○​ Adaptive Query Execution (AQE):

■​ Dynamically optimizes physical plans at runtime based on
real data stats.

■​ Stages:
●​ Re-optimize join strategies (switch shuffle ↔

broadcast, Spark initially plans a Shuffle Join. During
execution, detects if has to switch).

●​ Merge small partitions → fewer tasks.
●​ Split skewed partitions. (Detects one shuffle partition

much larger than others. Splits that partition into
smaller ones to avoid single strangler task.)

●​ Optimize shuffle partition count automatically (If Spark
planned 200 partitions but actual data small, AQE
merges to fewer partitions (say 10) → reduces
overhead.)

○​ Cost-Based Optimizer (CBO):
■​ Uses collected table statistics (size, NDV, histograms) to

choose better join orders and physical plans, works with
Catalyst. Enabled via: spark.conf.set("spark.sql.cbo.enabled",
True)

○​ Executor Tuning:
■​ Each Spark executor is a JVM process that runs multiple tasks

in parallel, sharing CPU cores and memory. Tuning it effects
the data processing.

●​ Fat Executors: Few executors with more cores &
memory per executor

○​ Pros: Low shuffle, context switching, startup
overhead.

○​ Cons: More GC time, less parallelism.
○​ Use in small cluster.

●​ Tiny Executors: Many executors with fewer cores &
memory each

○​ Pros: High parallelism, localised failures.
○​ Cons: High shuffle, Scheduler overhead.
○​ Use in large cluster.

■​ Use balanced executors.
○​ ZOrder Optimization:

■​ Z-Ordering is a multi-dimensional clustering technique for
data files (typically Parquet/Delta). It co-locates related
column values together in the same set of files to make
filtering and range scans faster.

Eg: ​
SELECT * FROM transactions WHERE country = 'IN' AND event_time

BETWEEN '2025-10-01' AND '2025-10-10';

Databricks physically rearranges data on disk so that rows with

similar country and event_time values end up close together (in

the same files).

So when you filter by these columns, Databricks needs to read

fewer files — because the relevant data is tightly clustered

instead of being scattered across many files.

Query: OPTIMIZE transactions ZORDER BY (country, event_time);

Internally, it interleaves the bits and stores, like:

country bits: 0 1 1 0 0 1

event_time bits:1 1 1 0 1 0 0 1 0 1 0 1

Z-order bits: 0 1 1 1 0 0 1 1 0 0 1 0 1 0 1…

Rows are sorted by this interleaved single composite Z-order bit

key.

Z-Ordering > Sorting by One Column

○​ Code/SQL Query tips:

■​ UNION removes duplicate rows, UNION ALL does not. There
is a performance hit when using UNION instead of UNION
ALL, choose based on usecase.

■​ Avoid collect()/toPandas(). Prevents OOM & driver crashes.
■​ Use coalesce() to reduce partitions.
■​ Use native Spark SQL functions over UDFs.

●​ Spark UDFs: UDF (User-Defined Function) is a custom
function written by the user to extend Spark’s
capabilities beyond the built-in functions provided by
Spark SQL. It runs row by row on executors hence slow.

●​ Scala/Java/SQL UDF - Catalyst optimized, Pandas UDF
- partially optimized, Python UDF - Executes via Py4J,
not optimised as serialization overhead.

●​ Note that print() or debug() logs may not be visible as
UDFs run on workers, not drivers to view logs. And
when UDF fails on one partition, the entire stage fails
and is retried.

@udf(returnType=IntegerType())​
def safe_divide(a, b):​
 try:​
 return a // b if b != 0 else None​
 except Exception:​
 return None

■​ Filtering before joins, AQE, skews fix, etc.
■​ spark.sql.shuffle.partitions default value is 200, plan

accordingly.
■​ Use G1GC or Parallel GC for large heaps (Details in Java page).
■​ Use KryoSerializer instead of Java serializer.

●​ When Spark runs distributed jobs: Data is sent between
executors (e.g., for shuffles, caching, broadcasts). Each
time, Spark must serialize (convert objects into byte
form) to transfer them across the network or store
them in memory/disk. Hence performance matters.

■​ Prefer partition pruning > filter at runtime.
■​ Use checkpoint when lineage too long.
■​ EXISTS/NOT EXISTS (Stops evaluating as soon as a match is

found, faster) > IN/NOT IN (Subquery may be fully evaluated,
slower on large datasets).

SELECT * FROM orders ​

WHERE customer_id IN (SELECT id FROM customers WHERE active = 1);​
​
SELECT * FROM orders o​
WHERE EXISTS (​
 SELECT 1 FROM customers c ​
 WHERE c.id = o.customer_id AND c.active = 1​
);

●​ Delta format: An open-source data storage format that adds a metadata

layer on top of data files (like Apache Parquet) to bring ACID transactions,
schema enforcement/validation, and data versioning to data lakes.

○​ Parquet + Transaction Log (_delta_log/)
○​ CDF (Change data feed): Track and read only the data that has

changed
○​ Optimistic concurrency with version checks; last writer wins unless

conflict in case of concurrent writes in delta.
○​ MERGE vs INSERT OVERWRITE: MERGE upserts, keeps history;

INSERT OVERWRITE replaces, breaks time travel.
○​ When data is written repeatedly in small batches (e.g., streaming

writes, micro-batches, frequent MERGEs), Delta tables accumulate
many small Parquet files — often a few KBs or MBs instead of
hundreds of MBs. Small files problem in solved by Optimize + bin
packing (compaction).

 # MERGE (Upsert)​
deltaTable.alias("target").merge(​
 source.alias("source"), "target.id = source.id"​
).whenMatchedUpdate(set={"value": "source.value"}) \​
 .whenNotMatchedInsert(values={"id": "source.id", "value":

"source.value"}) \​
 .execute()​
—---

Merge vs Insert overwrite

Merge:

MERGE INTO user_data AS target

USING updates AS source

ON target.user_id = source.user_id

WHEN MATCHED THEN UPDATE SET target.city = source.city

WHEN NOT MATCHED THEN INSERT (user_id, name, city)

VALUES (source.user_id, source.name, source.city);

-> Keeps old versions → Time travel and CDF still work properly,

Only updates necessary rows

Insert:

INSERT OVERWRITE TABLE user_data SELECT * FROM new_snapshot;

-> Replaces existing data in the target scope (entire table or

partition). Breaks lineage of replaced partitions — time travel

still technically possible via older versions, but you lose

fine-grained row history and CDF continuity

—---

​
DELETE​
deltaTable.delete("date < '2024-01-01'")​
​
UPDATE​
deltaTable.update(condition="status = 'pending'", set={"status":

"'processed'"})​
​
Time Travel​
df = spark.read.format("delta").option("versionAsOf",

5).load("/path")​
df = spark.read.format("delta").option("timestampAsOf",

"2024-10-01").load("/path")

Optimize data + Retain data commands ​
OPTIMIZE events ZORDER BY (country, date)

VACUUM events RETAIN 168 HOURS

Enable CDF - delta.enableChangeDataFeed = true​
spark.read.format("delta")

 .option("readChangeFeed", "true")

 .option("startingVersion", 2)

 .option("endingVersion", 3)

 .table("user_data")

Some more notes:

●​ When a file is expected to be read but is no longer present, a typical job
would fail with an exception. Setting spark.sql.files.ignoreMissingFiles to
true tells Spark to handle the FileNotFoundException or similar errors by
simply ignoring the missing file. The job will continue to process the
remaining files, and the resulting DataFrame will contain data only from
the files that existed.

●​ foreach and foreachPartition:
○​ Foreach: Runs function per row (use for debugging, not for I/O).

Writing to db using this, can lead to millions of calls, hence avoid.
○​ Foreachpartition: Runs function per partition on executor (ideal for

external system writes)
○​ Generally, they are used to write data to Kafka/RMQ/APIs/Tables,

etc., termed as side-effects.

df = df.checkpoint() # Prevent recomputation if partition fails

df.checkpoint(eager=True) # Materializes immediately

df.checkpoint(eager=False) # Lazy (on next action)​
df.rdd.foreachPartition(write_partition_to_dynamodb) # Efficient

parallel writes

●​ Spark is faster than Hadoop/MapReduce due to in-memory data

processing, can spill memory to disk if required to handle large datasets,
uses Catalyst optimizer, etc.

●​ printSchema() shows parquet metadata only, does not trigger a job. View
plans in Spark: Use df.explain(True) or df.queryExecution.

●​ Foreach vs UDFs:
○​ UDF and foreachPartition process data row by row, but they

operate at completely different layers of Spark’s architecture — and
have very different purposes.

○​ UDF:
■​ Transform data inside the Spark SQL/DataFrame engine.

■​ Operates on data values (columns, rows) as part of a
transformation (select, withColumn, filter, etc.) on executors.
The output of a UDF is a new column value, part of the logical
plan.

○​ Foreach:
■​ Perform actions with side effects, often for external I/O. Also

runs on executors, but outside Spark’s SQL planner. Operates
on raw data (RDD/Row objects) per partition. Used after all
transformations are done.

●​ Photon is Databricks’ next-generation vectorized execution engine,
written in C++, designed to replace many of Spark’s traditional JVM
operators.

○​ How Photon runs:
■​ Spark normally executes physical operators within

JVM-based executors.
■​ When Photon is enabled and the query is compatible:

●​ Spark’s logical plan → Photon physical operators
●​ Instead of running Java bytecode, executors load

Photon's native C++ operators.
■​ Photon uses the same columnar memory format (Arrow-like)

that Spark uses → minimal copying.
○​ Why C++ execution is faster

■​ Python → JVM involves Py4J, IPC, serialization overhead →
slow.

■​ JVM → C++ (Photon) stays within the executor process using
shared memory buffers → near zero serialization.

■​ Photon uses: SIMD vectorization, tighter memory layout, CPU
instruction-level optimizations (AVX-512, etc.)

○​ Where Photon works: Photon accelerates: File Scans (Parquet,
Delta), Projection, Filter, Aggregations, Joins (hash, sort-merge).

○​ Where Photon does NOT work: Python / Scala UDFs, Complex
nested types in some cases, MLlib operators, Graph workloads.

■​ When unsupported sections appear, Spark falls back to JVM
operators only for those parts—the rest of the plan can still
use Photon.

—--------—--------—--------—--------—--------—-------------

Structured Streaming [High-level basics]

●​ Core:
○​ Spark treats streaming as incremental batch processing. Source →

Ingestion → Transformations → Sink. DAG Scheduler handles each
micro-batch as a separate job.

○​ Unbounded Data: Continuous stream of incoming records (e.g.,
Kafka, socket, files).

○​ Streaming DataFrame: Logical table that keeps growing over time.
○​ Trigger: Defines when to process data (e.g.,

`Trigger.ProcessingTime("10 seconds")`).
○​ Micro-batch Mode (default): Spark batches incoming data into small

chunks for processing.
○​ Continuous Mode (experimental): Processes data record-by-record

for sub-second latency (rarely used in prod).
○​ Trigger.Once: Runs one micro-batch and stops (useful for

incremental ETL).
●​ Checkpointing: Essential for fault tolerance and recovery. Stores (in

HDFS/S3): Offsets of data source (e.g., Kafka offset), State store snapshots
(for aggregations/joins), Metadata for job progress. Without
checkpointing, Spark can’t resume from failure.

●​ Watermarking: Tells Spark how long to wait for late data. Example:
withWatermark("event_time", "10 minutes"). Late data is discarded.

●​ Operations:
○​ Stateless: Eg: filter, map, select; Does not use any statestore

(HDFS/S3).
○​ Stateful: Eg: aggregations, windowed operations, joins; Uses

statestore.
●​ Stream joins:

○​ Stream–Static Join: stream joined with a static lookup table
○​ Stream–Stream Join: Both sides unbounded → requires watermark +

state handling

●​ Output Modes:
○​ Append: Only new rows (e.g., no aggregation)
○​ Update: Update existing aggregations incrementally
○​ Complete: Recompute entire output table every batch (for full

aggregates)
●​ Sink:

○​ In-memory table for testing / Spark SQL queries
○​ File (Parquet/JSON) writes in micro-batches
○​ Kafka; Exactly-once supported
○​ foreach: Row-level custom sink. Risky — not idempotent

■​ It’s not idempotent by default. If a micro-batch fails halfway
through and restarts, Spark reprocesses that batch from the
last checkpoint. foreach directly calls user logic (e.g., insert
into DB, PUT to S3). Spark’s checkpoint only tracks offsets
processed, not what your writer did externally. Runs directly
on workers.

○​ foreachBatch: Custom logic per batch-level. Best for DB writes
(production level)

■​ df.writeStream.foreachBatch(lambda batch_df, batch_id: ...):
Runs once per micro-batch (not per row). BatchId is provided
→ you can make your logic idempotent, say writing in append
mode.

■​ foreachBatch is considered safe for exactly-once sinks while
foreach is not.

■​ The callback (the control function) runs on the driver, But the
data processing inside (batch_df operations) runs distributed
on executors, just like any normal DataFrame job.

●​ spark.streaming.backpressure.enabled=true: It adjusts the ingestion rate
of data from the source.

—---

Hadoop [High-level basics]

●​ HDFS (Hadoop Distributed File System — Distributed Storage Layer)

○​ Purpose: Reliable, fault-tolerant storage for very large files across a
distributed cluster.

○​ Architecture:
■​ NameNode (Master): Stores metadata — file names, block

locations, permissions. Keeps a transaction log (EditLog) and
a checkpoint (FsImage). Doesn’t store actual data, only where
blocks live. Single point of failure in early Hadoop versions
(fixed later via Secondary NameNode / Standby NameNode /
High Availability mode).

■​ DataNodes (Slaves): Store actual file blocks (default size: 128
MB or 256 MB). Send periodic heartbeats and block reports to
the NameNode. Perform replication, deletion, and block
creation as instructed by the NameNode.

○​ Key Concepts:
■​ Replication factor: Default = 3 → improves fault tolerance and

availability.
■​ Rack Awareness: NameNode knows rack topology → places

replicas on different racks to balance network efficiency and
fault resilience.

■​ Write Path: Client → NameNode (for metadata) → Pipeline to
DataNodes for block storage.

■​ Read Path: Client contacts NameNode → retrieves block
locations → reads directly from nearest DataNodes.

○​ Benefits: High throughput, scalable storage, fault-tolerant,
optimized for large sequential reads/writes.

●​ MapReduce (Distributed Processing Framework)
○​ Purpose: Parallel computation model that processes massive data

using Map() and Reduce() functions.
○​ Flow:

■​ Job Submission: Client submits job to JobTracker (Hadoop v1)
or YARN ResourceManager (v2).

■​ Split Phase: Input is divided into chunks (InputSplits),
typically aligned with HDFS blocks.

■​ Map Phase: Mapper processes each split → outputs
intermediate key-value pairs.

■​ Shuffle & Sort: Framework groups all values by key and
transfers them to the appropriate reducer.

■​ Reduce Phase: Reducer aggregates or combines values per
key → produces final output.

○​ Key Points:
■​ Idempotent: Multiple runs on same data yield same output.
■​ Fault Tolerance: If a node fails, tasks are re-run on another

node using data replicas.
■​ Data Locality Optimization: Tries to schedule Map tasks on

nodes where data already resides.
■​ Output written back to HDFS.

○​ Limitation: High latency for iterative or real-time processing —
hence, frameworks like Spark were built to overcome this.

●​ YARN (Yet Another Resource Negotiator — Cluster Resource Management
Layer)

○​ Purpose: Decouples resource management from job scheduling,
making Hadoop cluster multi-tenant and more efficient.

>>

Scenario(s)

Question1: Assume daily data volume to be 1TB/day from Kafka. Discuss about
infra requirements if you were to ingest/parse data and store in S3 - in daily
basis (batch) or near real-time basis (streaming).

Answer:

Common Assumptions

Parameter Value Notes

Daily data volume 1 TB/day (≈ 1000 GB) Uncompressed
JSON input

Average record size 1 KB ≈ 1 billion
records/day

Storage layer HDFS / S3 / Delta Lake

Compression after
parse

Parquet (≈ 5× smaller)

Cluster type Spark on YARN or Kubernetes

Task JSON parsing → schema
mapping → write Parquet/Delta

Batch Job (Run Once per Day):

●​ Workload Pattern
○​ One Spark job runs once a day.
○​ Reads 1 TB JSON → parses → writes to Parquet.
○​ Target: finish in ~1 hour.

●​ JSON Parsing Throughput
○​ Average: 30 – 50 MB/sec per vCPU.
○​ Assume 40 MB/sec/vCPU for estimation.
○​ Formula: Total time (sec) = (1000 GB × 1024 MB/GB) / (Throughput

× vCPUs)
○​ Target time = 3600 sec → vCPUs ≈ (1000 × 1024) / (40 × 3600) ≈ 7

cores (ideal)
○​ Add ~5× overhead for Spark shuffles, GC, I/O, etc. → ≈ 40–50

vCPUs needed realistically.
●​ Suggested Infra (Batch): Note that if you’re fine with 2–3 hr runtime, halve

the cores (~20–25 vCPUs).

Resource Estimate

Executors 10 – 12

Cores / executor 4 – 5

Total vCPUs 40 – 50

Memory / executor 16 – 24 GB

Total memory 200 – 250 GB

Cluster nodes ~5–6 × m5.4xlarge (AWS)

Cost ~ $3–4 per hour of runtime

Near Real-time Streaming Job:

●​ Workload Pattern
○​ Continuous Kafka ingestion rate: 1 TB / 24 h = 1000 GB / 86400 s ≈

11.6 MB/sec
○​ Goal: process each micro-batch within seconds or a minute.

●​ Efficiency
○​ Structured Streaming is ~2–3× less efficient than batch due to

micro-batching and checkpointing.
○​ Rule of thumb: ~2 vCPUs per MB/sec input rate
○​ At 11.6 MB/sec input: 11.6 × 2 vCPUs ≈ 23 vCPUs
○​ Add 50 % headroom → ≈ 35–40 vCPUs total (continuous).

●​ Suggested Infra (Streaming): Note that streaming runs 24×7, unlike batch.

Resource Estimate

Executors 8 – 10

Cores / executor 4

Total vCPUs 32 – 40

Memory / executor 16 – 24 GB

Total memory 160 – 200 GB

Cluster nodes ~4–5 × m5.4xlarge (AWS)

Cost $3–4/hr × 24 h = $75–100/day

Comparison Summary

Aspect Batch (Daily) Streaming (Near Real-time)

Data processed 1 TB once/day Continuous 1 TB/day

Compute needed ~40–50 vCPUs (1 hr run) ~35–40 vCPUs continuous

Memory ~200–250 GB ~160–200 GB

Cost ~$3–4/hr (only 1 hr/day) ~$75–100/day

Latency Up to 1 day Seconds – minutes

Complexity Easier Higher (checkpointing,
watermarking)

Key Takeaways

●​ Batch = cheaper, simpler if 1-day delay acceptable. Streaming = real-time
insights but higher cost (~20–30× more).

●​ JSON parsing is CPU-intensive — prefer Avro or Parquet ingestion.
●​ Autoscaling or serverless Spark (Databricks, EMR on EKS) reduces idle

cost.
●​ Can I use less infra for streaming to save cost?

○​ Yes — if your streaming job does very little per-record work, one or
two vCPUs may keep up with a modest Kafka throughput. But if
your streaming job performs CPU-heavy JSON parsing, joins,
windowing, stateful operations, or frequent checkpoints, you need
many more cores to avoid lag and operational issues.

○​ Trade-offs when you reduce infra
■​ Increased processing latency — microbatches take longer to

finish → higher end-to-end latency (seconds → minutes →
hours).

■​ Backpressure and Kafka lag — consumer lag will grow if
processing rate < input rate; lag must be stored in Kafka
(requires sufficient retention).

■​ Larger state / checkpoint growth — slower processing
increases state growth and checkpoint sizes, slowing
recoveries.

■​ Spill to disk / GC pressure — insufficient memory leads to
disk spill and longer task times; long GC pauses may cause
executor failures.

■​ Lower fault tolerance and recovery speed — on failure,
recovery needs more time if checkpoints are large and cluster
is small.

■​ Higher operational complexity — must monitor lag, tune
partitions, tune microbatch durations, autoscale carefully.

■​ Potential for data loss if retention insufficient — if Kafka
retention expires before backlog is processed.

○​ Example scenarios (for 1 TB/day → 11.6 MB/s)
■​ Scenario A — Light work (minimal parsing):

●​ per_core_MBps = 12 MB/s
●​ required_cores = 11.6 / 12 ≈ 1.0
●​ headroom 2× → allocated_cores ≈ 2 vCPUs. When

appropriate: messages are already compact
(AVRO/Protobuf), transforms are trivial, no stateful
operations.

■​ Scenario B — Medium work (JSON parsing + enrichments)
●​ per_core_MBps = 4 MB/s
●​ required_cores = 11.6 / 4 ≈ 2.9
●​ headroom 2× → allocated_cores ≈ 6 vCPUs​

 When appropriate: parsing JSON, some UDFs, light
joins, small state windows.

■​ Scenario C — Heavy work (stateful joins, large windows, heavy
UDFs)

●​ per_core_MBps = 1 MB/s
●​ required_cores = 11.6 / 1 ≈ 11.6
●​ headroom 2× → allocated_cores ≈ 24 vCPUs​

 When appropriate: large keyed state, big aggregations,
frequent checkpoints, complex UDFs.

■​ Note: memory per executor should be aligned to avoid spills
(e.g., 16–32 GB per executor depending on JVM overhead and
state size). Also distribute workload across many Kafka
partitions to parallelize.

>>

Question2: -

Answer:-

>>

	Batch Pipelines
	Structured Streaming [High-level basics]
	Hadoop [High-level basics]
	Scenario(s)

